Online Robust Principal Component Analysis With Change Point Detection

Robust principal component analysis (PCA) is a key technique for dynamical high-dimensional data analysis, including background subtraction for surveillance video. Typically, robust PCA requires all observations to be stored in memory before processing. The batch manner makes robust PCA inefficient for big data. In this paper, we develop an efficient online robust PCA method, namely, online moving window robust principal component analysis (OMWRPCA). Unlike the existing algorithms, OMWRPCA can successfully track not only slowly changing subspaces but also abruptly changing subspaces. Embedding hypothesis testing into the algorithm enables OMWRPCA to detect change points of the underlying subspaces. Extensive numerical experiments, including real-time background subtraction, demonstrate the superior performance of OMWRPCA compared with other state-of-the-art approaches.

[1]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[2]  Jiandong Tian,et al.  Snowflake Removal for Videos via Global and Local Low-Rank Decomposition , 2018, IEEE Transactions on Multimedia.

[3]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[4]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[5]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[7]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[8]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[9]  Namrata Vaswani,et al.  Provable Dynamic Robust PCA or Robust Subspace Tracking , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[10]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Namrata Vaswani,et al.  An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum , 2013, IEEE Transactions on Signal Processing.

[12]  Ying Liu,et al.  Compressed-Sensed-Domain L1-PCA Video Surveillance , 2015, IEEE Transactions on Multimedia.

[13]  Shuicheng Yan,et al.  Online Robust PCA via Stochastic Optimization , 2013, NIPS.

[14]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[16]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[18]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[19]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[20]  John C. S. Lui,et al.  Online Robust Subspace Tracking from Partial Information , 2011, ArXiv.

[21]  Namrata Vaswani,et al.  NEARLY OPTIMAL ROBUST SUBSPACE TRACKING: A UNIFIED APPROACH , 2017, 2018 IEEE Data Science Workshop (DSW).

[22]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[23]  Jarvis D. Haupt,et al.  Identifying Outliers in Large Matrices via Randomized Adaptive Compressive Sampling , 2014, IEEE Transactions on Signal Processing.

[24]  Feiping Nie,et al.  Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization , 2011, IJCAI.

[25]  Volkan Cevher,et al.  A variational approach to stable principal component pursuit , 2014, UAI.

[26]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[27]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[28]  Namrata Vaswani,et al.  Recursive robust PCA or recursive sparse recovery in large but structured noise , 2013, ICASSP.

[29]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[30]  Gilad Lerman,et al.  A novel M-estimator for robust PCA , 2011, J. Mach. Learn. Res..

[31]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[32]  Qingshan Liu,et al.  Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[34]  Hasup Lee,et al.  Background Subtraction Using Background Sets With Image- and Color-Space Reduction , 2016, IEEE Transactions on Multimedia.

[35]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[36]  Xin J. Hunt,et al.  Online Data Thinning via Multi-Subspace Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  George Atia,et al.  High Dimensional Low Rank Plus Sparse Matrix Decomposition , 2015, IEEE Transactions on Signal Processing.

[38]  J. Tropp,et al.  Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.