An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo

This article describes a fast direct solver (i.e., not iterative) for partial hierarchically semiseparable systems. This solver requires a storage of O(N logN) and has a computational complexity of O(N logN) arithmetic operations. The numerical benchmarks presented illustrate the method in the context of interpolation using radial basis functions. The key ingredients behind this fast solver are recursion, efficient low-rank factorization using Chebyshev interpolation, and the Sherman-Morrison-Woodbury formula. The algorithm and the analysis are worked out in detail. The performance of the algorithm is illustrated for a variety of radial basis functions and target accuracies.

[1]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[2]  James Bremer,et al.  An adaptive fast direct solver for boundary integral equations in two dimensions , 2009 .

[3]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[4]  R. Schaback Creating Surfaces from Scattered Data Using Radial Basis Functions , 1995 .

[5]  R. Beatson,et al.  Fast evaluation of radial basis functions: I , 1992 .

[6]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[7]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[8]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[9]  G. Newsam,et al.  Efficient generation of conditional simulations by chebyshev matrix polynomial approximations to the symmetric square root of the covariance matrix , 1995 .

[10]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[11]  Eric Darve,et al.  The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..

[12]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[13]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[14]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[15]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..

[16]  R. J. O'dowd Conditioning of coefficient matrices of Ordinary Kriging , 1991 .

[17]  Ramani Duraiswami,et al.  Fast Radial Basis Function Interpolation via Preconditioned Krylov Iteration , 2007, SIAM J. Sci. Comput..

[18]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[19]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..

[20]  M. Gu,et al.  Strong rank revealing LU factorizations , 2003 .

[21]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[22]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[23]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[24]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[25]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[26]  Sergej Rjasanow,et al.  Adaptive Cross Approximation of Dense Matrices , 2000 .

[27]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[28]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[29]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[30]  Ke Chen An Analysis of Sparse Approximate Inverse Preconditioners for Boundary Integral Equations , 2001, SIAM J. Matrix Anal. Appl..

[31]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[32]  Stephen A. Vavasis,et al.  Preconditioning for Boundary Integral Equations , 1992, SIAM J. Matrix Anal. Appl..

[33]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[34]  Lexing Ying,et al.  A fast direct solver for elliptic problems on general meshes in 2D , 2012, J. Comput. Phys..

[35]  Eric Darve,et al.  Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation , 2012, J. Comput. Phys..

[36]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[37]  Per-Gunnar Martinsson,et al.  A direct solver with O(N) complexity for integral equations on one-dimensional domains , 2011, 1105.5372.

[38]  Stephen Billings,et al.  Interpolation of geophysical data using continuous global surfaces , 2002 .

[39]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[40]  Eric F Darve The Fast Multipole Method , 2000 .

[41]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[42]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[43]  B. Baxter,et al.  The Interpolation Theory of Radial Basis Functions , 2010, 1006.2443.

[44]  Walter Dehnen,et al.  A Hierarchical O(N) Force Calculation Algorithm , 2002 .

[45]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[46]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[47]  Max D. Morris,et al.  Six factors which affect the condition number of matrices associated with kriging , 1997 .

[48]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[49]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[50]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[51]  Peter Challenor,et al.  Computational Statistics and Data Analysis the Effect of the Nugget on Gaussian Process Emulators of Computer Models , 2022 .

[52]  C. Pan On the existence and computation of rank-revealing LU factorizations , 2000 .

[53]  Richard K. Beatson,et al.  Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration , 1999, Adv. Comput. Math..

[54]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[55]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[56]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[57]  N. Nishimura Fast multipole accelerated boundary integral equation methods , 2002 .

[58]  V. Rokhlin,et al.  A fast randomized algorithm for the approximation of matrices ✩ , 2007 .

[59]  Per-Gunnar Martinsson,et al.  Fast direct solvers for integral equations in complex three-dimensional domains , 2009, Acta Numerica.