Triangulations and meshes in computational geometry

The Delaunay triangulation of a finite point set is a central theme in computational geometry. It finds its major application in the generation of meshes used in the simulation of physical processes. This paper connects the predominantly combinatorial work in classical computational geometry with the numerical interest in mesh generation. It focuses on the two- and three-dimensional case and covers results obtained during the twentieth century.

[1]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[2]  N. J. Lennes Theorems on the Simple Finite Polygon and Polyhedron , 1911 .

[3]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[4]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[5]  E. Helly,et al.  Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .

[6]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[7]  Michael Ian Shamos,et al.  Geometric complexity , 1975, STOC.

[8]  Michael Ian Shamos,et al.  Geometric intersection problems , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[9]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[10]  Paul Erdös COMBINATORIAL PROBLEMS IN GEOMETRY AND NUMBER THEORY , 1979 .

[11]  Franco P. Preparata,et al.  Plane-sweep algorithms for intersecting geometric figures , 1982, CACM.

[12]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[13]  Charles L. Lawson,et al.  Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..

[14]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[15]  Larry L. Schumaker,et al.  Triangulation Methods , 1987, Topics in Multivariate Approximation.

[16]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[17]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[18]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[19]  L. Paul Chew,et al.  Guaranteed-Quality Triangular Meshes , 1989 .

[20]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.

[21]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[22]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[23]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[24]  Peter L. Williams Visibility-ordering meshed polyhedra , 1992, TOGS.

[25]  Tiow Seng Tan,et al.  An O(n2 log n) Time Algorithm for the Minmax Angle Triangulation , 1992, SIAM J. Sci. Comput..

[26]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[27]  Jim Ruppert,et al.  A new and simple algorithm for quality 2-dimensional mesh generation , 1993, SODA '93.

[28]  R. Seidel Backwards Analysis of Randomized Geometric Algorithms , 1993 .

[29]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[30]  Raimund Seidel,et al.  The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.

[31]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[32]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[33]  G. C. Shephard,et al.  A New Look at Euler's Theorem for Polyhedra , 1994 .

[34]  Gary L. Miller,et al.  A Delaunay based numerical method for three dimensions: generation, formulation, and partition , 1995, STOC '95.

[35]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[36]  Herbert Edelsbrunner Algebraic decomposition of non-convex polyhedra , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[37]  Christopher J. Van Wyk,et al.  Static analysis yields efficient exact integer arithmetic for computational geometry , 1996, TOGS.

[38]  Rolf Klein,et al.  Algorithmische Geometrie , 1997 .

[39]  Dafna Talmor,et al.  Well-Spaced Points for Numerical Methods , 1997 .

[40]  L. Paul Chew,et al.  Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.

[41]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[42]  W. Nef A New Look at Euler's Theorem for Polyhedra: A Comment , 1997 .

[43]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[44]  Gary L. Miller,et al.  Control Volume Meshes Using Sphere Packing , 1998, IRREGULAR.

[45]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.