Semidefinite programming
暂无分享,去创建一个
[1] R. Bellman,et al. On Systems of Linear Inequalities in Hermitian Matrix Variables , 1962 .
[2] Jan Karel Lenstra,et al. History of mathematical programming : a collection of personal reminiscences , 1991 .
[3] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[4] Roy E. Marsten,et al. Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..
[5] J. Borwein,et al. Regularizing the Abstract Convex Program , 1981 .
[6] F. Rendl. Semideenite Programming and Combinatorial Optimization , 1998 .
[7] V. Deineko,et al. The Quadratic Assignment Problem: Theory and Algorithms , 1998 .
[8] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[9] Franz Rendl,et al. A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..
[10] Renato D. C. Monteiro,et al. An Efficient Algorithm for Solving the MAXCUT SDP Relaxation , 1998 .
[11] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[12] J. Borwein. Characterization of optimality for the abstract convex program with finite dimensional range , 1981, Journal of the Australian Mathematical Society.
[13] R. Fletcher. Semi-Definite Matrix Constraints in Optimization , 1985 .
[14] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[15] David P. Williamson,et al. New 3/4-Approximation Algorithms for the Maximum Satisfiability Problem , 1994, SIAM J. Discret. Math..
[16] A. Shapiro. First and Second Order Analysis of Nonlinear Semideenite Programs , 1997 .
[17] H. Wolkowicz,et al. SQ2P, Sequential Quadratic Constrained Quadratic Programming , 1998 .
[18] A. Lewis. Eigenvalue-constrained faces☆ , 1998 .
[19] Henry Wolkowicz,et al. Convex Relaxations of (0, 1)-Quadratic Programming , 1995, Math. Oper. Res..
[20] Stephen P. Boyd,et al. Control System Analysis and Synthesis via Linear Matrix Inequalities , 1993, 1993 American Control Conference.
[21] Motakuri V. Ramana,et al. An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..
[22] M. Overton,et al. A New Primal-Dual Interior-Point Method for Semidefinite Programming , 1994 .
[23] G. P. Barker,et al. Cones of diagonally dominant matrices , 1975 .
[24] G. Abor Pataki. On the Rank of Extreme Matrices in Semideenite Programs and the Multiplicity of Optimal Eigenvalues , 1997 .
[25] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[26] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[27] Henry Wolkowicz,et al. Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..
[28] Charles R. Johnson,et al. The Euclidian Distance Matrix Completion Problem , 1995, SIAM J. Matrix Anal. Appl..
[29] Satissed Now Consider. Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .
[30] Shinji Hara,et al. Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..
[31] Franz Rendl,et al. Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..
[32] Michael L. Overton,et al. Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..
[33] Franz Rendl,et al. Applications of parametric programming and eigenvalue maximization to the quadratic assignment problem , 1992, Math. Program..
[34] M. Ramana. An algorithmic analysis of multiquadratic and semidefinite programming problems , 1994 .
[35] R. Vanderbei,et al. An Interior-point Method for Semideenite Programming an Interior-point Method for Semideenite Programming , 1994 .
[36] P. Wolfe,et al. The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .
[37] Robert J. Vanderbei,et al. Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.
[38] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[39] Franz Rendl,et al. A New Lower Bound Via Projection for the Quadratic Assignment Problem , 1992, Math. Oper. Res..
[40] Panos M. Pardalos,et al. Quadratic Assignment and Related Problems , 1994 .
[41] R. Monteiro,et al. A Uniied Analysis for a Class of Long-step Primal-dual Path-following Interior-point Algorithms for Semideenite Programming , 1998 .
[42] R. Fletcher. A Nonlinear Programming Problem in Statistics (Educational Testing) , 1981 .
[43] P. Gilmore. Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem , 1962 .
[44] Nondegeneracy and Quantitative Stability of Parameterized Optimization Problems with Multiple Solutions , 1998, SIAM J. Optim..
[45] Levent Tunçel,et al. Characterization of the barrier parameter of homogeneous convex cones , 1998, Math. Program..
[46] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[47] C. Richard Johnson,et al. Matrix Completion Problems: A Survey , 1990 .
[48] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[49] L. Vandenberghe,et al. Algorithms and software for LMI problems in control , 1997 .
[50] Panos M. Pardalos,et al. Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..
[51] O. Taussky. Positive-definite matrices and their role in the study of the characteristic roots of general matrices☆ , 1968 .
[52] Elmer Earl. Branstetter,et al. The theory of linear programming , 1963 .
[53] F. Jarre. An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices , 1993 .
[54] Franz Rendl,et al. A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..
[55] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[56] Michel X. Goemans,et al. Semideenite Programming in Combinatorial Optimization , 1999 .
[57] Lorant Porkolab. On the Complexity of Semideenite Programs , 1996 .
[58] Charles R. Johnson,et al. Positive definite completions of partial Hermitian matrices , 1984 .