Reduced Aggregate Scattering Operators for Path Tracing

Aggregate scattering operators (ASOs) describe the overall scattering behavior of an asset (i.e., an object or volume, or collection thereof) accounting for all orders of its internal scattering. We propose a practical way to precompute and compactly store ASOs and demonstrate their ability to accelerate path tracing. Our approach is modular avoiding costly and inflexible scene‐dependent precomputation. This is achieved by decoupling light transport within and outside of each asset, and precomputing on a per‐asset level. We store the internal transport in a reduced‐dimensional subspace tailored to the structure of the asset geometry, its scattering behavior, and typical illumination conditions, allowing the ASOs to maintain good accuracy with modest memory requirements. The precomputed ASO can be reused across all instances of the asset and across multiple scenes. We augment ASOs with functionality enabling multi‐bounce importance sampling, fast short‐circuiting of complex light paths, and compact caching, while retaining rapid progressive preview rendering. We demonstrate the benefits of our ASOs by efficiently path tracing scenes containing many instances of objects with complex inter‐reflections or multiple scattering.

[1]  Tomas Akenine-Möller,et al.  Practical Product Importance Sampling for Direct Illumination , 2008, Comput. Graph. Forum.

[2]  Yu-Ting Tsai,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[3]  Zen-Chung Shih,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[4]  Pieter Peers,et al.  A compact factored representation of heterogeneous subsurface scattering , 2006, ACM Trans. Graph..

[5]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[6]  Kavita Bala,et al.  Direct-to-indirect transfer for cinematic relighting , 2006, ACM Trans. Graph..

[7]  Pat Hanrahan,et al.  Monte Carlo evaluation of non-linear scattering equations for subsurface reflection , 2000, SIGGRAPH.

[8]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[9]  Steve Marschner,et al.  Light scattering from human hair fibers , 2003, ACM Trans. Graph..

[10]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, SIGGRAPH Courses.

[11]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[12]  Steve Marschner,et al.  A comprehensive framework for rendering layered materials , 2014, ACM Trans. Graph..

[13]  Francisco J. Serón,et al.  Physically-based simulation of rainbows , 2012, TOGS.

[14]  Kenny Mitchell,et al.  Modular Radiance Transfer , 2011, ACM Trans. Graph..

[15]  J. Steele,et al.  A lighting model for fast rendering of forest ecosystems , 2008, 2008 IEEE Symposium on Interactive Ray Tracing.

[16]  Greg Humphreys,et al.  Physically Based Rendering, Second Edition: From Theory To Implementation , 2010 .

[17]  Arno Zinke,et al.  Ibero-american Symposium on Computer Graphics -siacg (2006) Global Illumination for Fiber Based Geometries , 2022 .

[18]  Okan Arikan,et al.  LECTURERS , 1948, Statistics for Astrophysics.

[19]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[20]  John M. Snyder,et al.  All-frequency rendering of dynamic, spatially-varying reflectance , 2009, SIGGRAPH 2009.

[21]  Nancy Argüelles,et al.  Author ' s , 2008 .

[22]  Jiajun Zhu,et al.  Precomputed Radiance Transfer for Real-time Indirect Lighting using a Spectral Mesh Basis , 2007, Rendering Techniques.

[23]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[24]  Peter-Pike J. Sloan,et al.  Delta radiance transfer , 2012, I3D '12.

[25]  Kun Zhou,et al.  Precomputed shadow fields for dynamic scenes , 2005, ACM Trans. Graph..

[26]  Fabio Pellacini,et al.  LightSlice: matrix slice sampling for the many-lights problem , 2011, ACM Trans. Graph..

[27]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, ACM Trans. Graph..

[28]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[29]  Derek Nowrouzezahrai,et al.  Joint importance sampling of low-order volumetric scattering , 2013, ACM Trans. Graph..

[30]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..

[31]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[32]  Weifeng Sun,et al.  Generalized wavelet product integral for rendering dynamic glossy objects , 2006, SIGGRAPH '06.

[33]  Tomas Akenine-Möller,et al.  Wavelet importance sampling: efficiently evaluating products of complex functions , 2005, ACM Trans. Graph..

[34]  Tobias Ritschel,et al.  On-line learning of parametric mixture models for light transport simulation , 2014, ACM Trans. Graph..

[35]  Kavita Bala,et al.  Matrix row-column sampling for the many-light problem , 2007, ACM Trans. Graph..

[36]  James Arvo,et al.  A framework for the analysis of error in global illumination algorithms , 1994, SIGGRAPH.

[37]  Donald P. Greenberg,et al.  Complex Luminaires , 2015, ACM Trans. Graph..

[38]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[39]  Hans-Peter Seidel,et al.  Canned Lightsources , 1998, Rendering Techniques.

[40]  Rui Wang,et al.  All-frequency interactive relighting of translucent objects with single and multiple scattering , 2005, ACM Trans. Graph..

[41]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[42]  P. Hanrahan,et al.  Light Scattering from Human Hair Fibers , 2003 .

[43]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[44]  Jaakko Lehtinen,et al.  A framework for precomputed and captured light transport , 2007, TOGS.

[45]  Henrik Wann Jensen,et al.  Importance Sampling Spherical Harmonics , 2009, Comput. Graph. Forum.

[46]  Shuang Zhao,et al.  Modular flux transfer , 2013, ACM Trans. Graph..

[47]  Lili Wang,et al.  Translucent Radiosity: Efficiently CombiningDiffuse Inter-Reflection andSubsurface Scattering , 2014, IEEE Transactions on Visualization and Computer Graphics.

[48]  Mark Meyer,et al.  Recent advances in light transport simulation: some theory and a lot of practice , 2014, SIGGRAPH '14.

[49]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Comput. Graph. Forum.

[50]  Derek Nowrouzezahrai,et al.  Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..

[51]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[52]  Anton Kaplanyan,et al.  Recent advances in light transport simulation: theory & practice , 2013, SIGGRAPH '13.

[53]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[54]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[55]  Baining Guo,et al.  All-frequency rendering of dynamic, spatially-varying reflectance , 2009, ACM Trans. Graph..

[56]  Jay E. Steele,et al.  Relighting Forest Ecosystems , 2009, ISVC.