Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response.

Color pixels composed of plasmonic nanostructures provide a highly promising approach for new display technologies, capable of vivid, robust coloration and incorporating the use of low-cost plasmonic materials, such as aluminum. Here we report a plasmonic device that can be tuned continuously across the entire visible spectrum, based on integrating a square array of aluminum nanostructures into an elastomeric substrate. By stretching the substrate in either of its two dimensions, the period and therefore the scattering color can be modified to the blue or the red of the at-rest structure, spanning the entire visible spectrum. The unique two-dimensional design of this structure enables active mechanical color tuning, under gentle elastic modulation with no more than 35% strain. We also demonstrate active image switching with this structure. This design strategy has the potential to open the door for next-generation flexible photonic devices for a wide variety of visible-light applications.

[1]  Highly tunable elastic dielectric metasurface lenses , 2016 .

[2]  Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics. , 2017, Nanotechnology.

[3]  Nikolay I Zheludev,et al.  Continuous metal plasmonic frequency selective surfaces. , 2011, Optics express.

[4]  Shang Sun,et al.  All-Dielectric Full-Color Printing with TiO2 Metasurfaces. , 2017, ACS nano.

[5]  John A Rogers,et al.  Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures. , 2015, ACS nano.

[6]  Changtao Wang,et al.  Actively Tunable Structural Color Rendering with Tensile Substrate , 2017 .

[7]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[8]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[9]  Peter Nordlander,et al.  High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. , 2016, ACS nano.

[10]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[11]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[12]  W. Withayachumnankul,et al.  Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. , 2016, ACS nano.

[13]  Na Liu,et al.  Dynamic plasmonic colour display , 2017, Nature Communications.

[14]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[15]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[16]  B. Reinhard,et al.  Assembling Color on the Nanoscale: Multichromatic Switchable Pixels from Plasmonic Atoms and Molecules , 2016, Advanced materials.

[17]  P. Nordlander,et al.  Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. , 2015, ACS nano.

[18]  Yuanjin Zhao,et al.  Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing. , 2014, ACS nano.

[19]  Peter Nordlander,et al.  Vivid, full-color aluminum plasmonic pixels , 2014, Proceedings of the National Academy of Sciences.

[20]  Peter Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[21]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[22]  Shin-Tson Wu,et al.  Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces , 2015, Nature Communications.

[23]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[24]  M. Dokmeci,et al.  Flexible Plasmonics on Unconventional and Nonplanar Substrates , 2011, Advanced materials.

[25]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[26]  A. Alec Talin,et al.  High-contrast and fast electrochromic switching enabled by plasmonics , 2016, Nature Communications.

[27]  S. Takayama,et al.  High-speed tuning of visible laser wavelength using a nanoimprinted grating optical tunable filter. , 2009, Applied physics letters.

[28]  P. Nordlander,et al.  Plasmonic colour generation , 2017 .

[29]  Ok Chan Jeong,et al.  Measurement of nonlinear mechanical properties of PDMS elastomer , 2011 .

[30]  C. Moon,et al.  Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator , 2017 .

[31]  Teri W. Odom,et al.  Programmable and reversible plasmon mode engineering , 2016, Proceedings of the National Academy of Sciences.

[32]  Klas Hjort,et al.  PDMS‐Based Elastomer Tuned Soft, Stretchable, and Sticky for Epidermal Electronics , 2016, Advanced materials.

[33]  Fabrication of Plasmonic Nanoparticles on a Wave Shape PDMS Substrate , 2017, Plasmonics.

[34]  Sang‐Hyun Oh,et al.  Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates , 2015, ACS nano.

[35]  Nicolas Bonod,et al.  All-Dielectric Colored Metasurfaces with Silicon Mie Resonators. , 2016, ACS nano.

[36]  P. Alsing,et al.  Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. , 2005, Nano letters.

[37]  Logan K. Ausman,et al.  Structural Effects in the Electromagnetic Enhancement Mechanism of Surface-Enhanced Raman Scattering: Dipole Reradiation and Rectangular Symmetry Effects for Nanoparticle Arrays , 2012 .

[38]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[39]  Yonghao Cui,et al.  Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. , 2012, ACS nano.

[40]  R. Agarwal,et al.  Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. , 2016, Nano letters.

[41]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[42]  P. Nordlander,et al.  Multicolor Electrochromic Devices Based on Molecular Plasmonics. , 2017, ACS nano.

[43]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.