Linear Recognition of Almost Interval Graphs

Let $\mbox{interval} + k v$, $\mbox{interval} + k e$, and $\mbox{interval} - k e$ denote the classes of graphs that can be obtained from some interval graph by adding $k$ vertices, adding $k$ edges, and deleting $k$ edges, respectively. When $k$ is small, these graph classes are called almost interval graphs. They are well motivated from computational biology, where the data ought to be represented by an interval graph while we can only expect an almost interval graph for the best. For any fixed $k$, we give linear-time algorithms for recognizing all these classes, and in the case of membership, our algorithms provide also a specific interval graph as evidence. When $k$ is part of the input, these problems are also known as graph modification problems, all NP-complete. Our results imply that they are fixed-parameter tractable parameterized by $k$, thereby resolving the long-standing open problem on the parameterized complexity of recognizing $\mbox{interval}+ k e$, first asked by Bodlaender et al. [Bioinformatics, 11:49--57, 1995]. Moreover, our algorithms for recognizing $\mbox{interval}+ k v$ and $\mbox{interval}- k e$ run in times $O(6^k \cdot (n + m))$ and $O(8^k \cdot (n + m))$, (where $n$ and $m$ stand for the numbers of vertices and edges respectively in the input graph,) significantly improving the $O(k^{2k}\cdot n^3m)$-time algorithm of Heggernes et al. [STOC 2007] and the $O(10^k \cdot n^9)$-time algorithm of Cao and Marx [SODA 2014] respectively.

[1]  E. Lander,et al.  Genomic mapping by fingerprinting random clones: a mathematical analysis. , 1988, Genomics.

[2]  Leizhen Cai,et al.  Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..

[3]  M. Golumbic,et al.  On the Complexity of DNA Physical Mapping , 1994 .

[4]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[5]  Robert E. Tarjan,et al.  Addendum: Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1985, SIAM J. Comput..

[6]  William Sean Kennedy,et al.  Finding a smallest odd hole in a claw-free graph using global structure , 2013, Discret. Appl. Math..

[7]  Sigve Hortemo Sæther,et al.  Faster algorithms for vertex partitioning problems parameterized by clique-width , 2013, Theor. Comput. Sci..

[8]  M. Dom Recognition , Generation , and Application of Binary Matrices with the Consecutive-Ones Property , 2009 .

[9]  Ken-ichi Kawarabayashi,et al.  Detecting even holes , 2005, J. Graph Theory.

[10]  Michel Habib,et al.  A survey of the algorithmic aspects of modular decomposition , 2009, Comput. Sci. Rev..

[11]  Alon Itai,et al.  Finding a Minimum Circuit in a Graph , 1978, SIAM J. Comput..

[12]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[13]  Tatsuo Ohtsuki,et al.  On Minimal Augmentation of a Graph to Obtain an Interval Graph , 1981, J. Comput. Syst. Sci..

[14]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[15]  Jeremy P. Spinrad,et al.  On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..

[16]  Stephan Olariu,et al.  The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..

[17]  Pavol Hell,et al.  Certifying LexBFS Recognition Algorithms for Proper Interval Graphs and Proper Interval Bigraphs , 2005, SIAM J. Discret. Math..

[18]  Wen-Lian Hsu O(M*N) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs , 1995, SIAM J. Comput..

[19]  Peisen Zhang,et al.  An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA , 1994, Comput. Appl. Biosci..

[20]  R. Tarjan Graph theory and Gaussian elimination. , 1975 .

[21]  Wen-Lian Hsu,et al.  Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..

[22]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[23]  Michal Pilipczuk,et al.  Exploring Subexponential Parameterized Complexity of Completion Problems , 2013, STACS.

[24]  M. Habib,et al.  Treewidth of cocomparability graphs and a new order-theoretic parameter , 1994 .

[25]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Pinar Heggernes,et al.  Characterizing Minimal Interval Completions , 2007, STACS.

[27]  Yixin Cao,et al.  Interval Deletion Is Fixed-Parameter Tractable , 2012, SODA.

[28]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.

[29]  Reuven Bar-Yehuda,et al.  A unified approach to approximating resource allocation and scheduling , 2001, JACM.

[30]  Jeremy P. Spinrad,et al.  Between O(nm) and O(nalpha) , 2003, SIAM J. Comput..

[31]  A. Tucker,et al.  A structure theorem for the consecutive 1's property☆ , 1972 .

[32]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[33]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[34]  Ekkehard Köhler,et al.  Recognizing graphs without asteroidal triples , 2000, J. Discrete Algorithms.

[35]  Ross M. McConnell,et al.  On Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs , 2013, WG.

[36]  Yixin Cao Direct and Certifying Recognition of Normal Helly Circular-Arc Graphs in Linear Time , 2014, FAW.

[37]  Sheng-Lung Peng,et al.  On the interval completion of chordal graphs , 2006, Discret. Appl. Math..

[38]  Fabien de Montgolfier,et al.  De'composition Modulaire des Graphes. The'orie, Extensions et Algorithmes , 2003 .

[39]  Yunlong Liu,et al.  Edge deletion problems: Branching facilitated by modular decomposition , 2015, Theor. Comput. Sci..

[40]  J. Spinrad,et al.  Between O(nm) and O(nα) , 2003, SODA '03.

[41]  D. Kendall Incidence matrices, interval graphs and seriation in archeology. , 1969 .

[42]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[43]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[44]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[45]  Dieter Kratsch,et al.  Finding and Counting Small Induced Subgraphs Efficiently , 1995, WG.

[46]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..

[47]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[48]  Michal Pilipczuk,et al.  Subexponential Parameterized Algorithm for Interval Completion , 2016, SODA.

[49]  Alan C. Tucker,et al.  An Efficient Test for Circular-Arc Graphs , 1980, SIAM J. Comput..

[50]  Mihalis Yannakakis,et al.  The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems , 1979, JACM.

[51]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[52]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[53]  Haim Kaplan,et al.  Bounded Degree Interval Sandwich Problems , 1999, Algorithmica.

[54]  N. S. Narayanaswamy,et al.  Obtaining Matrices with the Consecutive Ones Property by Row Deletions , 2014, Algorithmica.

[55]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[56]  G. Dirac On rigid circuit graphs , 1961 .

[57]  Michael R. Fellows,et al.  Parameterized complexity analysis in computational biology , 1995, Comput. Appl. Biosci..

[58]  Martin Charles Golumbic,et al.  Graph Sandwich Problems , 1995, J. Algorithms.

[59]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[60]  Michal Pilipczuk,et al.  Largest Chordal and Interval Subgraphs Faster than 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n$$\end{documen , 2015, Algorithmica.

[61]  Christos H. Papadimitriou,et al.  The NP-Completeness of the bandwidth minimization problem , 1976, Computing.

[62]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[63]  Jerrold R. Griggs,et al.  Interval graphs and maps of DNA. , 1986, Bulletin of mathematical biology.

[64]  R. Möhring Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .

[65]  Romeo Rizzi,et al.  A Faster Algorithm for Finding Minimum Tucker Submatrices , 2012, Theory of Computing Systems.

[66]  Pinar Heggernes,et al.  Interval Completion Is Fixed Parameter Tractable , 2008, SIAM J. Comput..

[67]  Yixin Cao,et al.  Forbidden induced subgraphs of normal Helly circular-arc graphs: Characterization and detection , 2017, Discret. Appl. Math..

[68]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[69]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[70]  Jitender S. Deogun,et al.  Diametral Path Graphs , 1995, WG.

[71]  Wen-Lian Hsu,et al.  A Simple Test for Interval Graphs , 1992, WG.

[72]  Gerhard J. Woeginger,et al.  Open problems around exact algorithms , 2008, Discret. Appl. Math..

[73]  Kurt Mehlhorn,et al.  Certifying algorithms for recognizing interval graphs and permutation graphs , 2003, SODA '03.

[74]  N. S. Narayanaswamy,et al.  FPT Algorithms for Consecutive Ones Submatrix Problems , 2013, IPEC.

[75]  Hans L. Bodlaender,et al.  Exact Algorithms for Intervalizing Colored Graphs , 2011, TAPAS.

[76]  E. Lander,et al.  Genomic mapping by anchoring random clones: a mathematical analysis. , 1991, Genomics.

[77]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[78]  Jayme Luiz Szwarcfiter,et al.  Normal Helly circular-arc graphs and its subclasses , 2013, Discret. Appl. Math..

[79]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[80]  Pim van 't Hof,et al.  Proper Interval Vertex Deletion , 2012, Algorithmica.

[81]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[82]  Christophe Crespelle,et al.  An O(n2)O(n2)-time algorithm for the minimal interval completion problem , 2013, Theor. Comput. Sci..

[83]  Paul Erdös,et al.  The size of chordal, interval and threshold subgraphs , 1989, Comb..

[84]  Yixin Cao,et al.  Chordal Editing is Fixed-Parameter Tractable , 2014, Algorithmica.

[85]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[86]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[87]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[88]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[89]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[90]  Flavia Bonomo,et al.  NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..

[91]  Richard M. Karp,et al.  Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.

[92]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[93]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[94]  Christophe Paul,et al.  Polynomial kernels for 3-leaf power graph modification problems , 2010, Discret. Appl. Math..

[95]  Abraham B. Korol,et al.  LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes , 2010, BMC Bioinformatics.

[96]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[97]  Hsueh-I Lu,et al.  A faster algorithm to recognize even-hole-free graphs , 2012, J. Comb. Theory, Ser. B.

[98]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[99]  Terry A. McKee,et al.  Restricted circular-arc graphs and clique cycles , 2003, Discret. Math..

[100]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.

[101]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[102]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[103]  Michal Pilipczuk,et al.  Largest Chordal and Interval Subgraphs Faster Than 2 n , 2013, ESA.

[104]  R. Möhring Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .