Linear Recognition of Almost Interval Graphs
暂无分享,去创建一个
[1] E. Lander,et al. Genomic mapping by fingerprinting random clones: a mathematical analysis. , 1988, Genomics.
[2] Leizhen Cai,et al. Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..
[3] M. Golumbic,et al. On the Complexity of DNA Physical Mapping , 1994 .
[4] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[5] Robert E. Tarjan,et al. Addendum: Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1985, SIAM J. Comput..
[6] William Sean Kennedy,et al. Finding a smallest odd hole in a claw-free graph using global structure , 2013, Discret. Appl. Math..
[7] Sigve Hortemo Sæther,et al. Faster algorithms for vertex partitioning problems parameterized by clique-width , 2013, Theor. Comput. Sci..
[8] M. Dom. Recognition , Generation , and Application of Binary Matrices with the Consecutive-Ones Property , 2009 .
[9] Ken-ichi Kawarabayashi,et al. Detecting even holes , 2005, J. Graph Theory.
[10] Michel Habib,et al. A survey of the algorithmic aspects of modular decomposition , 2009, Comput. Sci. Rev..
[11] Alon Itai,et al. Finding a Minimum Circuit in a Graph , 1978, SIAM J. Comput..
[12] D. Rose. A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .
[13] Tatsuo Ohtsuki,et al. On Minimal Augmentation of a Graph to Obtain an Interval Graph , 1981, J. Comput. Syst. Sci..
[14] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[15] Jeremy P. Spinrad,et al. On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..
[16] Stephan Olariu,et al. The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..
[17] Pavol Hell,et al. Certifying LexBFS Recognition Algorithms for Proper Interval Graphs and Proper Interval Bigraphs , 2005, SIAM J. Discret. Math..
[18] Wen-Lian Hsu. O(M*N) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs , 1995, SIAM J. Comput..
[19] Peisen Zhang,et al. An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA , 1994, Comput. Appl. Biosci..
[20] R. Tarjan. Graph theory and Gaussian elimination. , 1975 .
[21] Wen-Lian Hsu,et al. Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..
[22] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[23] Michal Pilipczuk,et al. Exploring Subexponential Parameterized Complexity of Completion Problems , 2013, STACS.
[24] M. Habib,et al. Treewidth of cocomparability graphs and a new order-theoretic parameter , 1994 .
[25] S. Benzer. ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[26] Pinar Heggernes,et al. Characterizing Minimal Interval Completions , 2007, STACS.
[27] Yixin Cao,et al. Interval Deletion Is Fixed-Parameter Tractable , 2012, SODA.
[28] Fedor V. Fomin,et al. Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.
[29] Reuven Bar-Yehuda,et al. A unified approach to approximating resource allocation and scheduling , 2001, JACM.
[30] Jeremy P. Spinrad,et al. Between O(nm) and O(nalpha) , 2003, SIAM J. Comput..
[31] A. Tucker,et al. A structure theorem for the consecutive 1's property☆ , 1972 .
[32] John M. Lewis,et al. The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..
[33] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[34] Ekkehard Köhler,et al. Recognizing graphs without asteroidal triples , 2000, J. Discrete Algorithms.
[35] Ross M. McConnell,et al. On Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs , 2013, WG.
[36] Yixin Cao. Direct and Certifying Recognition of Normal Helly Circular-Arc Graphs in Linear Time , 2014, FAW.
[37] Sheng-Lung Peng,et al. On the interval completion of chordal graphs , 2006, Discret. Appl. Math..
[38] Fabien de Montgolfier,et al. De'composition Modulaire des Graphes. The'orie, Extensions et Algorithmes , 2003 .
[39] Yunlong Liu,et al. Edge deletion problems: Branching facilitated by modular decomposition , 2015, Theor. Comput. Sci..
[40] J. Spinrad,et al. Between O(nm) and O(nα) , 2003, SODA '03.
[41] D. Kendall. Incidence matrices, interval graphs and seriation in archeology. , 1969 .
[42] D. R. Fulkerson,et al. Incidence matrices and interval graphs , 1965 .
[43] Haim Kaplan,et al. Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..
[44] Stephan Olariu,et al. Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..
[45] Dieter Kratsch,et al. Finding and Counting Small Induced Subgraphs Efficiently , 1995, WG.
[46] Roded Sharan,et al. Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..
[47] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[48] Michal Pilipczuk,et al. Subexponential Parameterized Algorithm for Interval Completion , 2016, SODA.
[49] Alan C. Tucker,et al. An Efficient Test for Circular-Arc Graphs , 1980, SIAM J. Comput..
[50] Mihalis Yannakakis,et al. The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems , 1979, JACM.
[51] Robert E. Tarjan,et al. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..
[52] Peter Buneman,et al. A characterisation of rigid circuit graphs , 1974, Discret. Math..
[53] Haim Kaplan,et al. Bounded Degree Interval Sandwich Problems , 1999, Algorithmica.
[54] N. S. Narayanaswamy,et al. Obtaining Matrices with the Consecutive Ones Property by Row Deletions , 2014, Algorithmica.
[55] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[56] G. Dirac. On rigid circuit graphs , 1961 .
[57] Michael R. Fellows,et al. Parameterized complexity analysis in computational biology , 1995, Comput. Appl. Biosci..
[58] Martin Charles Golumbic,et al. Graph Sandwich Problems , 1995, J. Algorithms.
[59] B. Peyton,et al. An Introduction to Chordal Graphs and Clique Trees , 1993 .
[60] Michal Pilipczuk,et al. Largest Chordal and Interval Subgraphs Faster than 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n$$\end{documen , 2015, Algorithmica.
[61] Christos H. Papadimitriou,et al. The NP-Completeness of the bandwidth minimization problem , 1976, Computing.
[62] Robert E. Tarjan,et al. Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.
[63] Jerrold R. Griggs,et al. Interval graphs and maps of DNA. , 1986, Bulletin of mathematical biology.
[64] R. Möhring. Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .
[65] Romeo Rizzi,et al. A Faster Algorithm for Finding Minimum Tucker Submatrices , 2012, Theory of Computing Systems.
[66] Pinar Heggernes,et al. Interval Completion Is Fixed Parameter Tractable , 2008, SIAM J. Comput..
[67] Yixin Cao,et al. Forbidden induced subgraphs of normal Helly circular-arc graphs: Characterization and detection , 2017, Discret. Appl. Math..
[68] Stephan Olariu,et al. Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..
[69] Virginia Vassilevska Williams,et al. Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.
[70] Jitender S. Deogun,et al. Diametral Path Graphs , 1995, WG.
[71] Wen-Lian Hsu,et al. A Simple Test for Interval Graphs , 1992, WG.
[72] Gerhard J. Woeginger,et al. Open problems around exact algorithms , 2008, Discret. Appl. Math..
[73] Kurt Mehlhorn,et al. Certifying algorithms for recognizing interval graphs and permutation graphs , 2003, SODA '03.
[74] N. S. Narayanaswamy,et al. FPT Algorithms for Consecutive Ones Submatrix Problems , 2013, IPEC.
[75] Hans L. Bodlaender,et al. Exact Algorithms for Intervalizing Colored Graphs , 2011, TAPAS.
[76] E. Lander,et al. Genomic mapping by anchoring random clones: a mathematical analysis. , 1991, Genomics.
[77] Leizhen Cai,et al. Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..
[78] Jayme Luiz Szwarcfiter,et al. Normal Helly circular-arc graphs and its subclasses , 2013, Discret. Appl. Math..
[79] Xiaotie Deng,et al. Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..
[80] Pim van 't Hof,et al. Proper Interval Vertex Deletion , 2012, Algorithmica.
[81] Fanica Gavril,et al. Algorithms on circular-arc graphs , 1974, Networks.
[82] Christophe Crespelle,et al. An O(n2)O(n2)-time algorithm for the minimal interval completion problem , 2013, Theor. Comput. Sci..
[83] Paul Erdös,et al. The size of chordal, interval and threshold subgraphs , 1989, Comb..
[84] Yixin Cao,et al. Chordal Editing is Fixed-Parameter Tractable , 2014, Algorithmica.
[85] C. Lekkeikerker,et al. Representation of a finite graph by a set of intervals on the real line , 1962 .
[86] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[87] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[88] Laurent Viennot,et al. Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..
[89] Ron Shamir,et al. Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.
[90] Flavia Bonomo,et al. NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..
[91] Richard M. Karp,et al. Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.
[92] Rolf H. Möhring,et al. Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..
[93] T. Gallai. Transitiv orientierbare Graphen , 1967 .
[94] Christophe Paul,et al. Polynomial kernels for 3-leaf power graph modification problems , 2010, Discret. Appl. Math..
[95] Abraham B. Korol,et al. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes , 2010, BMC Bioinformatics.
[96] M. Golummc. Algorithmic graph theory and perfect graphs , 1980 .
[97] Hsueh-I Lu,et al. A faster algorithm to recognize even-hole-free graphs , 2012, J. Comb. Theory, Ser. B.
[98] Rolf H. Möhring,et al. An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..
[99] Terry A. McKee,et al. Restricted circular-arc graphs and clique cycles , 2003, Discret. Math..
[100] Dieter Kratsch,et al. Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.
[101] Haim Kaplan,et al. Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..
[102] Dániel Marx. Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.
[103] Michal Pilipczuk,et al. Largest Chordal and Interval Subgraphs Faster Than 2 n , 2013, ESA.
[104] R. Möhring. Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .