Elicited Priors for Bayesian Model Specifications in Political Science Research

We explain how to use elicited priors in Bayesian political science research. These are a form of prior information produced by previous knowledge from structured interviews with subjective area experts who have little or no concern for the statistical aspects of the project. The purpose is to introduce qualitative and area-specific information into an empirical model in a systematic and organized manner in order to produce parsimonious yet realistic implications. Currently, there is no work in political science that articulates elicited priors in a Bayesian specification. We demonstrate the value of the approach by applying elicited priors to a problem in judicial comparative politics using data and elicitations we collected in Nicaragua.

[1]  Jonathan N. Katz,et al.  Random Coefficient Models for Time-Series—Cross-Section Data: Monte Carlo Experiments , 2004, Political Analysis.

[2]  Leonard A. Steverson Rethinking Social Inquiry: Diverse Tools, Shared Standards , 2005 .

[3]  David Collier,et al.  Rethinking Social Inquiry: Diverse Tools, Shared Standards , 2004 .

[4]  D. Spiegelhalter,et al.  Disease Mapping With WinBUGS and MLwiN, Bayesian Approaches to Clinical Trials and Health Care Evaluation , 2004 .

[5]  R. Cooke Elicitation of expert opinions for uncertainty and risks , 2003 .

[6]  S. Bennett “Perestroika” Lost: Why the Latest “Reform” Movement in Political Science Should Fail , 2002, PS.

[7]  Andrew D. Martin,et al.  Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953–1999 , 2002, Political Analysis.

[8]  P. H. Garthwaite,et al.  Prior distribution assessment for a multivariate normal distribution: An experimental study , 2001 .

[9]  Simon Jackman,et al.  Multidimensional Analysis of Roll Call Data via Bayesian Simulation: Identification, Estimation, Inference, and Model Checking , 2001, Political Analysis.

[10]  Jennifer L. Hill,et al.  Classification by Opinion-Changing Behavior: A Mixture Model Approach , 2001, Political Analysis.

[11]  Jane M. Booker,et al.  Eliciting and analyzing expert judgement - a practical guide , 2001, ASA-SIAM series on statistics and applied probability.

[12]  Jim Albert,et al.  Ordinal Data Modeling , 2000 .

[13]  G. Kasza “Technicism” Supplanting Disciplinarity among Political Scientists , 2000, PS: Political Science & Politics.

[14]  Simon Jackman,et al.  Estimation and Inference Are Missing Data Problems: Unifying Social Science Statistics via Bayesian Simulation , 2000, Political Analysis.

[15]  Simon Jackman,et al.  Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo , 2000 .

[16]  William H. Overholt,et al.  Ascher, William, Forecasting: an Appraisal for Policymakers and Planners , 2000 .

[17]  Andrew D. Martin,et al.  Voter Choice in Multi-Party Democracies: A Test of Competing Theories and Models , 1999 .

[18]  Alastair Smith,et al.  Testing theories of strategic choice: The example of crisis escalation , 1999 .

[19]  H. Kitchen,et al.  Comments on the Paper by , 1999 .

[20]  Bruce Western,et al.  Causal Heterogeneity in Comparative Research: A Bayesian Hierarchical Modeling Approach , 1998 .

[21]  Nathaniel N. Beck,et al.  Beyond linearity by default: Generalized additive models , 1998 .

[22]  J. Kadane,et al.  Experiences in elicitation , 1998 .

[23]  Anthony O'Hagan,et al.  Eliciting expert beliefs in substantial practical applications , 1998 .

[24]  Edward J. Bedrick,et al.  Bayesian Binomial Regression: Predicting Survival at a Trauma Center , 1997 .

[25]  Ronald A. Francisco Coercion and Protest: An Empirical Test in Two Democratic States , 1996 .

[26]  Larry M. Bartels Pooling Disparate Observations , 1996 .

[27]  L. Cosmides,et al.  Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty , 1996, Cognition.

[28]  Xavier Coller,et al.  Problems of Democratic Transition and Consolidation. Southern Europe, South America and Post-Communist Europe , 1996 .

[29]  John Tooby,et al.  Are humans good intuitive statisticians after all , 1996 .

[30]  Robert Crouchley,et al.  A Random-Effects Model for Ordered Categorical Data , 1995 .

[31]  R. Berk,et al.  Statistical Inference for Apparent Populations , 1995 .

[32]  Bradley P. Carlin,et al.  Elicitation, Monitoring, and Analysis for an AIDS Clinical Trial , 1995 .

[33]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[34]  Robert O. Keohane,et al.  Designing Social Inquiry: Scientific Inference in Qualitative Research. , 1995 .

[35]  Simon Jackman,et al.  Bayesian Inference for Comparative Research , 1994, American Political Science Review.

[36]  P. J. Williams Dual transitions from authoritarian rule : popular and electoral democracy in Nicaragua , 1994 .

[37]  Bradley P. Carlin,et al.  Bayesian approaches for monitoring clinical trials with an application to toxoplasmic encephalitis prophylaxis , 1993 .

[38]  Thomas A. Louis,et al.  Graphical Elicitation of a Prior Distribution for a Clinical Trial , 1993 .

[39]  Elisabeth R. Gerber,et al.  Endogenous Preferences and the Study of Institutions , 1993, American Political Science Review.

[40]  Paul H. Garthwaite,et al.  Elicitation of Prior Distributions for Variable-Selection Problems in Regression , 1992 .

[41]  Edward Leamer Bayesian Elicitation Diagnostics , 1992 .

[42]  S. Hora,et al.  Assessment of probability distributions for continuous random variables: A comparison of the bisection and fixed value methods , 1992 .

[43]  Duane Steffey,et al.  Hierarchical bayesian modeling with elicited prior information , 1992 .

[44]  Nozer D. Singpurwalla,et al.  On the Evidence Needed to Reach Agreed Action between Adversaries, with Application to Acceptance Sampling , 1991 .

[45]  R. Cooke Experts in Uncertainty: Opinion and Subjective Probability in Science , 1991 .

[46]  Thomas R. Rochon,et al.  Constancy of Legislative Perceptions of Constituency Opinion , 1991 .

[47]  F. Guess Bayesian Statistics: Principles, Models, and Applications , 1990 .

[48]  T. Fearn,et al.  Bayesian statistics : principles, models, and applications , 1990 .

[49]  Joel B. Greenhouse,et al.  [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment: A Bayesian Perspective , 1989 .

[50]  Paul H. Garthwaite,et al.  Quantifying Expert Opinion in Linear Regression Problems , 1988 .

[51]  R. L. Winkler,et al.  Separating probability elicitation from utilities , 1988 .

[52]  Umesh Gavasakar,et al.  A Comparison of Two Elicitation Methods for a Prior Distribution for a Binomial Parameter , 1988 .

[53]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[54]  Wei-Min Dong,et al.  From uncertainty to approximate reasoning: part 3: reasoning with conditional rules , 1987 .

[55]  Robert M. Groves,et al.  RESEARCH ON SURVEY DATA QUALITY , 1987 .

[56]  George T. Duncan,et al.  Some properties of the dirichlet-multinomial distribution and its use in prior elicitation , 1987 .

[57]  Felix S. Wong,et al.  From uncertainty to approximate reasoning: part 2: reasoning with algorithmic rules , 1986 .

[58]  J B Kadane,et al.  Progress toward a more ethical method for clinical trials. , 1986, The Journal of medicine and philosophy.

[59]  Felix S. Wong,et al.  From uncertainty to approximate reasoning: part 1: conceptual models and engineering interpretations , 1986 .

[60]  Christian Genest,et al.  Combining Probability Distributions: A Critique and an Annotated Bibliography , 1986 .

[61]  Hitoshi Furuta,et al.  Structural engineering applications of expert systems , 1985 .

[62]  Teddy Seidenfeld,et al.  Calibration, Coherence, and Scoring Rules , 1985, Philosophy of Science.

[63]  A. Tversky,et al.  Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment , 1983 .

[64]  K. Chaloner,et al.  Assessment of a Beta Prior Distribution: PM Elicitation , 1983 .

[65]  D. Spiegelhalter,et al.  The Assessment of the Subjective Opinion and its Use in Relation to Stopping Rules for Clinical Trials , 1983 .

[66]  George T. Duncan,et al.  Assessment of a beta prior distribution , 1983 .

[67]  Wayne S. Smith,et al.  Interactive Elicitation of Opinion for a Normal Linear Model , 1980 .

[68]  Michael A Crosby Implications of Prior Probability Elicitation on Auditor Sample Size Decisions , 1980 .

[69]  Derek W. Bunn,et al.  Estimation of subjective probability distributions in forecasting and decision making , 1979 .

[70]  Di Blockley,et al.  THE CALCULATION OF UNCERTAINTY IN CIVIL ENGINEERING. , 1979 .

[71]  A. Tversky,et al.  On the Reconciliation of Probability Assessments , 1979 .

[72]  Derek W. Bunn,et al.  Estimation of a Dirichlet prior distribution , 1978 .

[73]  Carl-Axel S. Staël von Holstein,et al.  Exceptional Paper---Probability Encoding in Decision Analysis , 1975 .

[74]  Robin M. Hogarth,et al.  Cognitive Processes and the Assessment of Subjective Probability Distributions , 1975 .

[75]  Edward Leamer A Class of Informative Priors and Distributed Lag Analysis , 1972 .

[76]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[77]  L. J. Savage Elicitation of Personal Probabilities and Expectations , 1971 .

[78]  R. L. Winkler The Assessment of Prior Distributions in Bayesian Analysis , 1967 .

[79]  Olaf Helmer,et al.  ANALYSIS OF THE FUTURE: THE DELPHI METHOD , 1967 .

[80]  G. C. Tiao,et al.  Bayes's theorem and the use of prior knowledge in regression analysis , 1964 .

[81]  F. Mosteller,et al.  Inference in an Authorship Problem , 1963 .

[82]  Howard Raiffa,et al.  Applied Statistical Decision Theory. , 1961 .

[83]  D. Lindley The Use of Prior Probability Distributions in Statistical Inference and Decisions , 1961 .

[84]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[85]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[86]  L. M. M.-T. Theory of Probability , 1929, Nature.

[87]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[88]  Karl Pearson,et al.  THE FUNDAMENTAL PROBLEM OF PRACTICAL STATISTICS , 1920 .