Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration

Ultra-compact, densely integrated optical components manufactured on a CMOS-foundry platform are highly desirable for optical information processing and electronic-photonic co-integration. However, the large spatial extent of evanescent waves arising from nanoscale confinement, ubiquitous in silicon photonic devices, causes significant cross-talk and scattering loss. Here, we demonstrate that anisotropic all-dielectric metamaterials open a new degree of freedom in total internal reflection to shorten the decay length of evanescent waves. We experimentally show the reduction of cross-talk by greater than 30 times and the bending loss by greater than 3 times in densely integrated, ultra-compact photonic circuit blocks. Our prototype all-dielectric metamaterial-waveguide achieves a low propagation loss of approximately 3.7±1.0 dB/cm, comparable to those of silicon strip waveguides. Our approach marks a departure from interference-based confinement as in photonic crystals or slot waveguides, which utilize nanoscale field enhancement. Its ability to suppress evanescent waves without substantially increasing the propagation loss shall pave the way for all-dielectric metamaterial-based dense integration.Miniaturization of optical components could give way to dense photonic-integrated circuits. Here, the authors demonstrate the control of evanescent waves using all-dielectric metamaterials and show that they can reduce cross-talk and bending loss, which limit the integration density in photonic circuits.

[1]  Yeshaiahu Fainman,et al.  Implementation of a graded-index medium by use of subwavelength structures with graded fill factor. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Shima Kadkhodazadeh,et al.  Extremely confined gap surface-plasmon modes excited by electrons , 2013, Nature Communications.

[4]  Zubin Jacob,et al.  Transparent subdiffraction optics: Nanoscale light confinement without metal , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[5]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[6]  A. Kirk,et al.  Two-period contra-directional grating assisted coupler. , 2016, Optics express.

[7]  R. C. Macridis A review , 1963 .

[8]  K. Kern,et al.  Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi2Se3 Probed by Electron Beams. , 2016, ACS nano.

[9]  Observation of Dyakonov Surface Waves , 2009 .

[10]  Steven G. Johnson,et al.  On-chip transformation optics for multimode waveguide bends , 2012, Nature Communications.

[11]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[12]  Jing Li,et al.  Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides , 2011 .

[13]  T. Krauss,et al.  Silicon nanostructures for photonics and photovoltaics. , 2014, Nature nanotechnology.

[14]  Akhlesh Lakhtakia,et al.  Surface electromagnetic waves: A review , 2011 .

[15]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[16]  Minghao Qi,et al.  Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide. , 2015, Optics express.

[17]  Xiang Zhang,et al.  Adiabatic elimination-based coupling control in densely packed subwavelength waveguides , 2015, Nature Communications.

[18]  I. Staude,et al.  Metamaterial-inspired silicon nanophotonics , 2017, Nature Photonics.

[19]  Michal Lipson,et al.  WDM-compatible mode-division multiplexing on a silicon chip , 2014, Nature Communications.

[20]  Jacob B Khurgin How to deal with the loss in plasmonics and metamaterials. , 2015, Nature nanotechnology.

[21]  B. Shen,et al.  Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking , 2016, Nature Communications.

[22]  Mordechai Segev,et al.  Subwavelength multilayer dielectrics: ultrasensitive transmission and breakdown of effective-medium theory. , 2014 .

[23]  B. Chichkov,et al.  All-dielectric nanophotonics: the quest for better materials and fabrication techniques , 2017, 1702.00677.

[24]  Steven G. Johnson,et al.  Observation of trapped light within the radiation continuum , 2013, Nature.

[25]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  Siegfried Janz,et al.  Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. , 2010, Optics express.

[28]  Ming Lu,et al.  High-density waveguide superlattices with low crosstalk , 2015, Nature Communications.

[29]  Moty Heiblum,et al.  Analysis of curved optical waveguides by conformal transformation , 1975 .

[30]  James Gary Eden,et al.  IEEE Journal of Quantum Electronics: Editorial , 2002 .

[31]  L. Torner,et al.  Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves. , 2014, Nature nanotechnology.

[32]  Siegfried Janz,et al.  Waveguide sub‐wavelength structures: a review of principles and applications , 2015 .

[33]  Rajesh Menon,et al.  Metamaterial-waveguide bends with effective bend radius < λ₀/2. , 2015, Optics letters.

[34]  V. Raisys,et al.  A Review of Principles and Applications of Medicolegal Alcohol Determination , 1983 .

[35]  Vladimir M. Shalaev,et al.  Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited] , 2015 .

[36]  M. Fisher,et al.  Large-scale photonic integrated circuits , 2005, 2011 ICO International Conference on Information Photonics.

[37]  Andrea Alù,et al.  All optical metamaterial circuit board at the nanoscale. , 2009, Physical review letters.

[38]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[39]  Yuri S. Kivshar,et al.  Three-dimensional all-dielectric photonic topological insulator , 2017 .

[40]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[41]  Zubin Jacob,et al.  Photonic skin-depth engineering , 2015 .

[42]  Thomas Hellman PHIL , 2018, Encantado.

[43]  M. Qi,et al.  Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides , 2015, Scientific Reports.

[44]  B. Shen,et al.  An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint , 2015, Nature Photonics.

[45]  Z. Jacob,et al.  Breakthroughs in Photonics 2014: Relaxed Total Internal Reflection , 2015, IEEE Photonics Journal.

[46]  Siva Yegnanarayanan,et al.  Silicon nanophotonic devices for integrated sensing , 2009 .

[47]  W. Liu,et al.  Q-factor enhancement in all-dielectric anisotropic nanoresonators , 2016, 1603.02111.

[48]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[49]  Lukas Chrostowski,et al.  Significant Crosstalk Reduction Using All-Dielectric CMOS-Compatible Metamaterials , 2016, IEEE Photonics Technology Letters.

[50]  A. Fiore,et al.  Phase matching using an isotropic nonlinear optical material , 1998, Nature.

[51]  S. Bozhevolnyi,et al.  Calculation of bending losses for highly confined modes of optical waveguides with transformation optics. , 2013, Optics letters.

[52]  R. Lwin,et al.  Flexible single-mode hollow-core terahertz fiber with metamaterial cladding , 2016 .

[53]  Thomas F. Krauss,et al.  Optical and confinement properties of two-dimensional photonic crystals , 1999 .

[54]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[55]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[56]  Lukas Chrostowski,et al.  Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. , 2015, Optics express.

[57]  J. Khurgin Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[59]  Weijian Yang,et al.  High-contrast gratings for integrated optoelectronics , 2012 .

[60]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[61]  Broad angle negative refraction in lossless all dielectric or semiconductor based asymmetric anisotropic metamaterial , 2015, 1505.07151.

[62]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[63]  Siegfried Janz,et al.  Waveguide subwavelength structures : a review of principles and applications , 2014 .

[64]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[65]  Shun-Hui Yang,et al.  Giant birefringence in multi-slotted silicon nanophotonic waveguides. , 2008, Optics express.

[66]  Jens H. Schmid,et al.  Ultra‐broadband nanophotonic beamsplitter using an anisotropic sub‐wavelength metamaterial , 2016 .

[67]  L. Torner,et al.  Anisotropy-induced photonic bound states in the continuum , 2017, Nature Photonics.

[68]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[69]  Wei Shi,et al.  Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. , 2014, Optics express.

[70]  Beth Kelley,et al.  Advances in optics and photonics make wind energy more viable , 2011 .

[71]  A. Miroshnichenko All-dielectric optical nanoantennas , 2012, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[72]  Journal of the Optical Society of America , 1950, Nature.

[73]  Sailing He,et al.  Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide. , 2007, Applied optics.

[74]  Peter Kulchyski and , 2015 .

[75]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[76]  Wim Bogaerts,et al.  193nm immersion lithography for high-performance silicon photonic circuits , 2014, Advanced Lithography.

[77]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[78]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[80]  G. Milton The Theory of Composites , 2002 .

[81]  J. Bowers,et al.  Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction , 2012, Light: Science & Applications.

[82]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[83]  L. Chrostowski,et al.  Silicon Photonics Design: From Devices to Systems , 2015 .

[84]  E. Marcatili Bends in optical dielectric guides , 1969 .

[85]  Kyunghun Han,et al.  Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators , 2017, Nature Communications.