Digital Nets and Coding Theory

Recent research has established close links between digital nets and coding theory. In fact, the problem of constructing good digital nets can now be viewed as the problem of constructing good linear codes in metric spaces that are more general than Hamming spaces. In this paper we report on the fascinating connections between digital nets and linear codes. In particular, we describe the duality theory for digital nets, the asymptotics of digital-net parameters, and the new concept of cyclic digital nets.

[1]  M. M. Skriganov,et al.  Coding Theory and Uniform Distributions , 1999, ArXiv.

[2]  Yves Edel,et al.  Construction of digital nets from BCH -codes , 1998 .

[3]  Harald Niederreiter Constructions of (t, m, s)-Nets , 2000 .

[4]  Gary L. Mullen,et al.  Construction of digital ( t,m,s )-nets from linear codes , 1996 .

[5]  Harald Niederreiter,et al.  Updated tables of parameters of (T, M, S)‐nets , 1999 .

[6]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[7]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[8]  Harald Niederreiter,et al.  Monte-Carlo and Quasi-Monte Carlo Methods 1998 , 2000 .

[9]  Harald Neiderreiter A combinatorial problem for vector spaces over finite fields , 1991 .

[10]  H. Niederreiter,et al.  A Kronecker Product Construction for Digital Nets , 2002 .

[11]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .

[12]  G. Larcher Digital Point Sets: Analysis and Application , 1998 .

[13]  H. Niederreiter,et al.  Constructions of digital nets , 2002 .

[14]  H. Niederreiter,et al.  Duality for digital nets and its applications , 2001 .

[15]  Harald Niederreiter,et al.  Matrix-product constructions of digital nets , 2004, Finite Fields Their Appl..

[16]  R. Blahut Theory and practice of error control codes , 1983 .

[17]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[18]  Wolfgang Ch. Schmid,et al.  Bounds for digital nets and sequences , 1997 .

[19]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[20]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[21]  Harald Niederreiter,et al.  Constructions of digital nets using global function fields , 2002 .

[22]  Y. Edel,et al.  Coding‐theoretic constructions for (t,m,s)‐nets and ordered orthogonal arrays , 2002 .

[23]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[24]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[25]  Ferruh Özbudak,et al.  Elements of Prescribed Order, Prescribed Traces and Systems of Rational Functions Over Finite Fields , 2005, Des. Codes Cryptogr..

[26]  Families of Ternary -Nets Related to BCH-Codes , 2001 .

[27]  Harald Niederreiter,et al.  Low-discrepancy point sets , 1986 .

[28]  H. Niederreiter,et al.  Digital Nets, Duality, and Algebraic Curves , 2004 .

[29]  Tor Helleseth,et al.  Hypercubic 4 and 5-Designs from Double-Error-Correcting BCH Codes , 2003, Des. Codes Cryptogr..