Visual Analysis of Multi-Parameter Distributions across Ensembles

For an ensemble of data points in a multi-parameter space, we present a visual analytics technique to select a representative distribution of parameter values, and analyse how representative this distribution is in all ensemble members. A multi-parameter cluster in a representative ensemble member is visualized via a parallel coordinates plot, to provide initial distributions and let domain experts interactively select relevant parameters and value ranges. Since unions of value ranges select hyper-cubes in parameter space, data points in these unions are not necessarily contained in the cluster. By using a multi-parameter kD-tree to further refine the selected parameter ranges, in combination with a covariance analysis of refined sets of data points, a tight partition in multi-parameter space with reduced number of falsely selected points is obtained. To assess the representativeness of the selected multi-parameter distribution across the ensemble, a linked side-by-side view of per-member violin plots is provided. We propose modifications of violin plots to show multi-parameter distributions simultaneously, and investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions. In a linked spatial view, users can analyse and compare the spatial distribution of selected points in different ensemble members via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter distributions across an ensemble of 3D fields.

[1]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[2]  Florian Pappenberger,et al.  The TIGGE Project and Its Achievements , 2016 .

[3]  Han-Wei Shen,et al.  Distribution Driven Extraction and Tracking of Features for Time-varying Data Analysis , 2016, IEEE Transactions on Visualization and Computer Graphics.

[4]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[5]  Leland McInnes,et al.  Accelerated Hierarchical Density Based Clustering , 2017, 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[6]  Valerio Pascucci,et al.  Gaussian mixture model based volume visualization , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[7]  Dieter Schmalstieg,et al.  Comparative Analysis of Multidimensional, Quantitative Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[8]  Rüdiger Westermann,et al.  Comparative visual analysis of vector field ensembles , 2015, 2015 IEEE Conference on Visual Analytics Science and Technology (VAST).

[9]  David L. Kao,et al.  Visualizing spatial multivalue data , 2005, IEEE Computer Graphics and Applications.

[10]  Lars Linsen,et al.  Surface Extraction from Multi-field Particle Volume Data Using Multi-dimensional Cluster Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[11]  Kenneth I. Joy,et al.  Future Challenges for Ensemble Visualization , 2014, IEEE Computer Graphics and Applications.

[12]  Marcel Breeuwer,et al.  Orientation-Enhanced Parallel Coordinate Plots , 2016, IEEE Transactions on Visualization and Computer Graphics.

[13]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[14]  A. Adithya Parallel Coordinates , 2015 .

[15]  Daniel Gonçalves,et al.  Studying Color Blending Perception for Data Visualization , 2014, EuroVis.

[16]  J. Hintze,et al.  Violin plots : A box plot-density trace synergism , 1998 .

[17]  Camilla Forsell,et al.  Evaluation of Parallel Coordinates: Overview, Categorization and Guidelines for Future Research , 2016, IEEE Transactions on Visualization and Computer Graphics.

[18]  Rüdiger Westermann,et al.  Multi-Charts for Comparative 3D Ensemble Visualization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[19]  Thomas Villmann,et al.  Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences , 2012, Neurocomputing.

[20]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[21]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[22]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[23]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[24]  Lars Linsen,et al.  Visual Analysis of Multi-Run Spatio-Temporal Simulations Using Isocontour Similarity for Projected Views , 2016, IEEE Transactions on Visualization and Computer Graphics.

[25]  Joe Michael Kniss,et al.  Visualizing Summary Statistics and Uncertainty , 2010, Comput. Graph. Forum.

[26]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[27]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[28]  Tino Weinkauf,et al.  Global Feature Tracking and Similarity Estimation in Time‐Dependent Scalar Fields , 2017, Comput. Graph. Forum.

[29]  Tamara Munzner,et al.  Steerable, Progressive Multidimensional Scaling , 2004, IEEE Symposium on Information Visualization.

[30]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[31]  Hans-Christian Hege,et al.  Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[32]  Manuel Menezes de Oliveira Neto,et al.  Overview and State-of-the-Art of Uncertainty Visualization , 2014, Scientific Visualization.

[33]  Junpeng Wang,et al.  Visualization and Visual Analysis of Ensemble Data: A Survey , 2019, IEEE Transactions on Visualization and Computer Graphics.

[34]  Min Chen,et al.  Conceptualizing Visual Uncertainty in Parallel Coordinates , 2012, Comput. Graph. Forum.

[35]  Markus Hadwiger,et al.  Ovis: A Framework for Visual Analysisof Ocean Forecast Ensembles , 2014, IEEE Transactions on Visualization and Computer Graphics.

[36]  Klaus Mueller,et al.  TripAdvisor^{N-D}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail , 2013, IEEE Transactions on Visualization and Computer Graphics.

[37]  Rüdiger Westermann,et al.  Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso‐Contours , 2016, Comput. Graph. Forum.

[38]  Ricardo J. G. B. Campello,et al.  Density-Based Clustering Based on Hierarchical Density Estimates , 2013, PAKDD.

[39]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[40]  Rüdiger Westermann,et al.  Visualizing the central tendency of ensembles of shapes , 2016, SIGGRAPH Asia Symposium on Visualization.

[41]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[42]  Han-Wei Shen,et al.  Statistical visualization and analysis of large data using a value-based spatial distribution , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[43]  Jos B. T. M. Roerdink,et al.  Visualizing High‐Dimensional Structures by Dimension Ordering and Filtering using Subspace Analysis , 2011, Comput. Graph. Forum.

[44]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[45]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[46]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[47]  Kellogg S. Booth,et al.  Heuristics for ray tracing using space subdivision , 1990, The Visual Computer.

[48]  Han-Wei Shen,et al.  CoDDA: A Flexible Copula-based Distribution Driven Analysis Framework for Large-Scale Multivariate Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[49]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[50]  Han-Wei Shen,et al.  Uncertainty Visualization Using Copula-Based Analysis in Mixed Distribution Models , 2018, IEEE Transactions on Visualization and Computer Graphics.

[51]  Yi Zhang,et al.  Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.

[52]  Hans-Peter Kriegel,et al.  Subspace selection for clustering high-dimensional data , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[53]  Markus Hadwiger,et al.  Visual analysis of uncertainties in ocean forecasts for planning and operation of off-shore structures , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[54]  Valerio Pascucci,et al.  Analysis of large-scale scalar data using hixels , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[55]  Matthew Chalmers,et al.  A hybrid layout algorithm for sub-quadratic multidimensional scaling , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[56]  Matthew O. Ward,et al.  Navigating hierarchies with structure-based brushes , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[57]  Hanqi Guo,et al.  CECAV-DNN: Collective Ensemble Comparison and Visualization using Deep Neural Networks , 2020, Vis. Informatics.

[58]  Stefan Bruckner,et al.  Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design , 2010, IEEE Transactions on Visualization and Computer Graphics.

[59]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[60]  B. Vogel,et al.  Using Emulators to Understand the Sensitivity of Deep Convective Clouds and Hail to Environmental Conditions , 2018, Journal of Advances in Modeling Earth Systems.

[61]  Lars Linsen,et al.  Overcoming the Curse of Dimensionality When Clustering Multivariate Volume Data , 2018, VISIGRAPP.

[62]  Lars Linsen,et al.  MultiClusterTree: Interactive Visual Exploration of Hierarchical Clusters in Multidimensional Multivariate Data , 2009, Comput. Graph. Forum.

[63]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[64]  Hans-Peter Seidel,et al.  An Edge-Bundling Layout for Interactive Parallel Coordinates , 2014, 2014 IEEE Pacific Visualization Symposium.

[65]  Robert S. Laramee,et al.  Smart Brushing for Parallel Coordinates , 2019, IEEE Transactions on Visualization and Computer Graphics.

[66]  Alexander Kumpf,et al.  Cluster-based Analysis of Multi-Parameter Distributions in Cloud Simulation Ensembles , 2019, VMV.

[67]  Torsten Möller,et al.  ParaGlide: Interactive Parameter Space Partitioning for Computer Simulations , 2011, IEEE Transactions on Visualization and Computer Graphics.