Design and efficient implementation of digital non-integer order controllers for electro-mechanical systems

Digital realization of non-integer-order controllers is important to exploit the benefits provided by these controllers, in terms of flexibility, dynamic performance and robust stability, for applications in mechatronics, industrial and automotive systems. To realize infinite-dimensional fractional-order operators and controllers in the digital domain, a discrete-time approximation is necessary that must be characterized by stable and minimum-phase properties for control purposes. This paper provides a design method useful for a wide class of plants and applies a consolidated approximation technique. Moreover, the practical implementation problems of digital non-integer control algorithms are deeply analyzed by considering the effects of the sampling period, of the conversion between analog and digital domain (and vice versa) and the associated quantization. Results show benefits and limitations of the approach.

[1]  Guido Maione,et al.  Concerning continued fractions representation of noninteger order digital differentiators , 2006, IEEE Signal Processing Letters.

[2]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[3]  Guido Maione,et al.  Continued fractions approximation of the impulse response of fractional-order dynamic systems , 2008 .

[4]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[5]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[6]  A. Charef,et al.  Analogue realisation of fractional-order integrator, differentiator and fractional PI/spl lambda/D/spl mu/ controller , 2006 .

[7]  Riccardo Caponetto,et al.  Field Programmable Analog Array Implementation of Noninteger Order PIλDμ Controller , 2008 .

[8]  P. Lino,et al.  New tuning rules for fractional PIα controllers , 2007 .

[9]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[10]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[11]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[12]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[13]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[14]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[15]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[16]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[17]  Nadine Gottschalk,et al.  Computer Controlled Systems Theory And Design , 2016 .

[18]  H. L. Fox Multivariable Feedback Design, by J.M. Maciejowski Addison-Wesley, Wokingham, Berkshire, UK, 1989, xv + 409 pp. index (£24.95) , 1990, Robotica.

[19]  M. Omair Ahmad,et al.  Exact fractional-order differentiators for polynomial signals , 2004, IEEE Signal Processing Letters.

[20]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Process. Lett..

[21]  Guido Maione,et al.  Conditions for a Class of Rational Approximants of Fractional Differentiators/Integrators to Enjoy the Interlacing Property , 2011 .

[22]  Guido Maione,et al.  On the Laguerre Rational Approximation to Fractional Discrete Derivative and Integral Operators , 2013, IEEE Transactions on Automatic Control.

[23]  I. Podlubny Fractional differential equations , 1998 .

[24]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[25]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Processing Letters.

[26]  Haruhisa Kawasaki,et al.  Adaptive Control For Robotic Manipulators Executing Multilateral Constrained Task , 2008 .

[27]  Ivo Petráš,et al.  Tuning and implementation methods for fractional-order controllers , 2012 .

[28]  Alessandro Pisano,et al.  Integrated technology fractional order proportional-integral-derivative design , 2014 .

[29]  José António Tenreiro Machado,et al.  Time domain design of fractional differintegrators using least-squares , 2006, Signal Process..

[30]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[31]  Guido Maione,et al.  Loop‐Shaping and Easy Tuning of Fractional‐Order Proportional Integral Controllers for Position Servo Systems , 2013 .

[32]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[33]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[34]  Guido Maione,et al.  High-Speed Digital Realizations of Fractional Operators in the Delta Domain , 2011, IEEE Transactions on Automatic Control.

[35]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.