Combined Genomic and Imaging Techniques Show Intense Arsenic Enrichment Caused by Detoxification in a Microbial Mat of the Dead Sea Shore

27 Microbial mats and microbialites are essential tools for reconstructing early life and its 28 environments. To better understand microbial trace element cycling, a microbial mat was 29 collected from the sinkhole systems of the western shores of the Dead Sea, a dynamic 30 environment exhibiting diverse extreme environments. Intense arsenic enrichment was measured 31 (up to 6.5 million times higher than current concentrations in water, and 400 times the bulk 32 concentration in the mat). Arsenic was found predominantly as As(V) in organic molecules, as 33 shown by XANES spectra and high-resolution elemental mapping. Arsenic cycling genes 34 obtained from metagenomic analysis were associated with arsenic detoxification, supporting an 35 active mechanism of As(V) uptake, As(III) efflux and organoarsenic accumulation in the 36 extracellular polymeric substances of the mat. Thus, we propose that such localized As 37 enrichment can be attributed to a transient increase in As(V) concentrations in the circulating 38 subsurface water of the Dead Sea shore and its subsequent incorporation into organoarsenic 39 molecules through microbial detoxification processes. 40

[1]  A. Oehlert,et al.  Assessing quality and beneficial uses of Sargassum compost. , 2023, Waste management.

[2]  Tomáš Matoušek,et al.  Arsenic in Lake Geneva (Switzerland, France): long term monitoring, and redox and methylation speciation in an As unpolluted, oligo-mesotrophic lake. , 2023, Environmental science. Processes & impacts.

[3]  R. Reid,et al.  Authigenic clays as precursors to carbonate precipitation in saline lakes of Salar de Llamara, Northern Chile , 2022, Communications Earth & Environment.

[4]  I. Gavrieli,et al.  Intensified microbial sulfate reduction in the deep Dead Sea during the early Holocene Mediterranean sapropel 1 deposition , 2022, Geobiology.

[5]  M. Grosjean,et al.  Scanning Hyperspectral Imaging for In Situ Biogeochemical Analysis of Lake Sediment Cores: Review of Recent Developments , 2022, J. Imaging.

[6]  C. Krawczyk,et al.  Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study , 2021 .

[7]  P. Bork,et al.  eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale , 2021, bioRxiv.

[8]  S. McGowan,et al.  Evidence for centennial-scale Mid-Holocene episodes of hypolimnetic anoxia in a high-altitude lake system from central Tian Shan (Kyrgyzstan) , 2021 .

[9]  E. Castro-Nallar,et al.  Phosphate-Arsenic Interactions in Halophilic Microorganisms of the Microbial Mat from Laguna Tebenquiche: from the Microenvironment to the Genomes , 2021, Microbial Ecology.

[10]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[11]  P. Visscher,et al.  Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean , 2020, Communications Earth & Environment.

[12]  Chonghua Li,et al.  Sorption and transformation of arsenic by extracellular polymeric substances extracted from Synechocystis sp. PCC6803. , 2020, Ecotoxicology and environmental safety.

[13]  K. Konstantinidis,et al.  The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling , 2020, Proceedings of the National Academy of Sciences.

[14]  C. Ryan,et al.  Accumulation of transition metals and metalloids in sulfidized stromatolites of the 3.48 billion–year–old Dresser Formation, Pilbara Craton , 2020 .

[15]  Lee L Yu,et al.  Organoarsenicals in seafood: Occurrence, Dietary exposure, Toxicity and Risk Assessment Considerations - A Review. , 2020, Journal of agricultural and food chemistry.

[16]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[17]  M. Stein,et al.  Constraints on aragonite precipitation in the Dead Sea from geochemical measurements of flood plumes , 2019, Quaternary Science Reviews.

[18]  B. Yin,et al.  Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review , 2019, Critical Reviews in Environmental Science and Technology.

[19]  Stefano Salvi,et al.  SAR Interferometry for Sinkhole Early Warning and Susceptibility Assessment along the Dead Sea, Israel , 2019, Remote. Sens..

[20]  J. Saunders,et al.  Bioremediation of arsenic-contaminated groundwater by sequestration of arsenic in biogenic pyrite , 2018, Applied Geochemistry.

[21]  E. Flores,et al.  A feasible method for As speciation in several types of seafood by LC-ICP-MS/MS. , 2018, Food chemistry.

[22]  P. Visscher,et al.  Formation of stromatolite lamina at the interface of oxygenic–anoxygenic photosynthesis , 2018, Geobiology.

[23]  P. Visscher,et al.  Distribution, redox state and (bio)geochemical implications of arsenic in present day microbialites of Laguna Brava, Salar de Atacama , 2018, Chemical Geology.

[24]  P. Cartigny,et al.  Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction , 2018, Geobiology.

[25]  D. Sparks,et al.  Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis , 2018 .

[26]  I. Gavrieli,et al.  Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea, Israel , 2017 .

[27]  J. Baross,et al.  Environmental niches and metabolic diversity in Neoarchean lakes , 2017, Geobiology.

[28]  R. Oremland,et al.  Autotrophic microbial arsenotrophy in arsenic-rich soda lakes. , 2017, FEMS microbiology letters.

[29]  Yong-guan Zhu,et al.  Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic , 2017, Scientific Reports.

[30]  G. Baer,et al.  Natural versus human control on subsurface salt dissolution and development of thousands of sinkholes along the Dead Sea coast , 2017 .

[31]  J. Hollibaugh,et al.  Metatranscriptomic analysis of prokaryotic communities active in sulfur and arsenic cycling in Mono Lake, California, USA , 2017, The ISME Journal.

[32]  You-Peng Chen,et al.  Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry. , 2017, Bioresource technology.

[33]  M. Grosjean,et al.  Hyperspectral imaging of sedimentary bacterial pigments: a 1700-year history of meromixis from varved Lake Jaczno, northeast Poland , 2017, Journal of Paleolimnology.

[34]  P. Visscher,et al.  Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record , 2017, Geobiology.

[35]  P. V. Bramhachari,et al.  Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. , 2016, Ecotoxicology and environmental safety.

[36]  S. Kotov,et al.  Peloids of Crimean salt lakes and the Dead Sea: controls on composition and formation , 2016, Environmental Earth Sciences.

[37]  P. Visscher,et al.  Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile , 2016, Front. Microbiol..

[38]  M. Stein,et al.  Microbial sedimentary imprint on the deep Dead Sea sediment , 2016 .

[39]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[40]  P. Bertin,et al.  The microbial genomics of arsenic. , 2016, FEMS microbiology reviews.

[41]  M. Kanehisa,et al.  BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. , 2016, Journal of molecular biology.

[42]  B. Rosen,et al.  New mechanisms of bacterial arsenic resistance , 2016, Biomedical journal.

[43]  D. Moreira,et al.  Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization , 2015, Front. Earth Sci..

[44]  P. Visscher,et al.  Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats , 2015, Scientific Reports.

[45]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[46]  Yulan Wang,et al.  Review of arsenic speciation, toxicity and metabolism in microalgae , 2015, Reviews in Environmental Science and Bio/Technology.

[47]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[48]  B. Rosen,et al.  ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone , 2015, Molecular microbiology.

[49]  D. Ionescu,et al.  Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea. , 2014, FEMS microbiology ecology.

[50]  P. Visscher,et al.  Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago , 2014 .

[51]  D. Ionescu,et al.  Archaeal populations in two distinct sedimentary facies of the subsurface of the Dead Sea. , 2014, Marine genomics.

[52]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[53]  Yong-guan Zhu,et al.  Earth Abides Arsenic Biotransformations. , 2014, Annual review of earth and planetary sciences.

[54]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[55]  D. Ionescu,et al.  Microenvironments of reduced salinity harbour biofilms in Dead Sea underwater springs. , 2014, Environmental microbiology reports.

[56]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[57]  J. Banfield,et al.  Quantifying Heavy Metals Sequestration by Sulfate-Reducing Bacteria in an Acid Mine Drainage-Contaminated Natural Wetland , 2013, Front. Microbiol..

[58]  I. Koch,et al.  Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. , 2012, Journal of environmental monitoring : JEM.

[59]  N. Islam,et al.  Arsenic adsorption by Bacterial Extracellular Polymeric Substances , 2012 .

[60]  Jörg Peplies,et al.  Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea , 2012, PloS one.

[61]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[62]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[63]  P. Visscher,et al.  Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas) , 2011 .

[64]  P. Philippot,et al.  Extreme 15N‐enrichments in 2.72‐Gyr‐old sediments: evidence for a turning point in the nitrogen cycle , 2011, Geobiology.

[65]  D. Moreira,et al.  Hydrochemistry and microbialites of the alkaline crater lake Alchichica, Mexico , 2011 .

[66]  A. Oren The dying Dead Sea: The microbiology of an increasingly extreme environment , 2010 .

[67]  G. Deves,et al.  Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy. , 2010, Environmental research.

[68]  R. Oremland,et al.  Identification of a Novel Arsenite Oxidase Gene, arxA, in the Haloalkaliphilic, Arsenite-Oxidizing Bacterium Alkalilimnicola ehrlichii Strain MLHE-1 , 2010, Journal of bacteriology.

[69]  S. Bernasconi,et al.  Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates) , 2010 .

[70]  P. Qian,et al.  Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies , 2009, PloS one.

[71]  R. Oremland,et al.  Arsenic in the Evolution of Earth and Extraterrestrial Ecosystems , 2009 .

[72]  D. Closson,et al.  Human-induced geological hazards along the Dead Sea coast , 2009 .

[73]  J. Hartmann,et al.  Water input requirements of the rapidly shrinking Dead Sea , 2009, Naturwissenschaften.

[74]  B. Schoepp‐Cothenet,et al.  Comment on "Arsenic (III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California" , 2009, Science.

[75]  M. Madigan,et al.  Arsenic(III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California , 2008, Science.

[76]  A. Ducluzeau,et al.  Enzyme phylogenies as markers for the oxidation state of the environment: The case of respiratory arsenate reductase and related enzymes , 2008, BMC Evolutionary Biology.

[77]  G. Deves,et al.  Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-X-ray absorption near-edge structure. , 2007, Analytical chemistry.

[78]  J. Guttman,et al.  Hydrochemical processes in the lower Jordan valley and in the Dead Sea area , 2007 .

[79]  Steven Salzberg,et al.  Identifying bacterial genes and endosymbiont DNA with Glimmer , 2007, Bioinform..

[80]  J. Eigenbrode,et al.  Late Archean rise of aerobic microbial ecosystems , 2006, Proceedings of the National Academy of Sciences.

[81]  Meir Abelson,et al.  Sinkhole “swarms” along the Dead Sea coast: Reflection of disturbance of lake and adjacent groundwater systems , 2006 .

[82]  Vladimir Lyakhovsky,et al.  Salt dissolution and sinkhole formation along the Dead Sea shore , 2006 .

[83]  Gejiao Wang,et al.  Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Ittai Gavrieli,et al.  Water, salt, and energy balances of the Dead Sea , 2005 .

[85]  R. Oremland,et al.  A Microbial Arsenic Cycle in a Salt-Saturated, Extreme Environment , 2005, Science.

[86]  John F. Stolz,et al.  The Ecology of Arsenic , 2003, Science.

[87]  F. Baymann,et al.  Arsenite oxidase, an ancient bioenergetic enzyme. , 2003, Molecular biology and evolution.

[88]  S. Kempe,et al.  Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001 , 2003, Naturwissenschaften.

[89]  B. Rosen,et al.  Biochemistry of arsenic detoxification , 2002, FEBS letters.

[90]  F. Sirocko,et al.  In-situ reflectance spectroscopy – analysing techniques for high-resolution pigment logging in sediment cores , 2002 .

[91]  S. Silver,et al.  Microbial arsenic: from geocycles to genes and enzymes. , 2002, FEMS microbiology reviews.

[92]  R. Oremland,et al.  Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. , 2002, FEMS microbiology ecology.

[93]  F. Livens,et al.  Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. , 2002, Environmental science & technology.

[94]  W. C. Sidle,et al.  Provenance of geogenic arsenic in the Goose River basin, Maine, USA , 2001 .

[95]  R. Oremland,et al.  Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate , 2001, Archives of Microbiology.

[96]  A. Oren Microbiological studies in the Dead Sea: future challenges toward the understanding of life at the limit of salt concentrations , 1999, Hydrobiologia.

[97]  John F. Stolz,et al.  Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic , 1998, Archives of Microbiology.

[98]  H. Breunig,et al.  Isolation and characterization of a new arsenic methylating bacterium from soil. , 1996, Microbiological research.

[99]  A. Oren,et al.  A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects , 1995, Hydrobiologia.

[100]  A. Oren The Dead Sea — alive again , 1993, Experientia.

[101]  G. L. Anderson,et al.  The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. , 1992, The Journal of biological chemistry.

[102]  M. Morita,et al.  Chemical Form of Arsenic in Marine Macroalgae , 1990 .

[103]  William J. Teesdale,et al.  The Guelph PIXE software package II , 1989 .

[104]  A. Oren Population dynamics of halobacteria in the Dead Sea water column1 , 1983 .

[105]  R. Wolfe,et al.  Biosynthesis of dimethylarsine by Methanobacterium. , 1971, Biochemistry.

[106]  Evan P. Jahrman,et al.  Assessing Arsenic Species in Foods Using Regularized Linear Regression of the Arsenic K-edge X-ray Absorption Near Edge Structure. , 2022, Journal of analytical atomic spectrometry.

[107]  A. Agnon,et al.  Arsenic enrichment and organomineralizations in microbial mats of the Dead Sea shores , 2021, Goldschmidt2021 abstracts.

[108]  K. D. Pandey,et al.  Microbial biofilms for the remediation of contaminated water , 2021 .

[109]  T. McHargue,et al.  Non-peer reviewed preprint submitted to EarthArXiv , 2019 .

[110]  F. Ben‐Ami,et al.  Sinkholes as a source of life in the Dead Sea region , 2018, Aquatic Sciences.

[111]  Daniela Fischer,et al.  Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments , 2015 .

[112]  E. Groner,et al.  Colonization of a new habitat : The case of the Dead Sea sinkholes – preliminary observations , 2014 .

[113]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[114]  N. Pingitore,et al.  Low levels of toxic elements in Dead Sea black mud and mud-derived cosmetic products , 2009, Environmental geochemistry and health.

[115]  B. Rosen,et al.  Arsenic Metabolism in Prokaryotic and Eukaryotic Microbes , 2007 .

[116]  V. A. Solé,et al.  A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra , 2007 .

[117]  A. Reimer,et al.  Microbialite Formation in Seawater of Increased Alkalinity, Satonda Crater Lake, Indonesia , 2003 .

[118]  B. Rosen,et al.  Metalloid resistance mechanisms in prokaryotes. , 1998, Journal of biochemistry.

[119]  C. Raston,et al.  Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster panulirus longipes cygnus George , 1977 .

[120]  A. Nissenbaum Minor and trace elements in Dead Sea water , 1977 .

[121]  J. Lakso,et al.  Methylation of inorganic arsenic by mammals. , 1975, Journal of agricultural and food chemistry.

[122]  F. Challenger Biological methylation. , 1951, Advances in enzymology and related subjects of biochemistry.

[123]  R. L. Burger,et al.  Isolation and Characterization , 2022 .