On Ultrametricity, Data Coding, and Computation

AbstractThe triangular inequality is a defining property of a metric space, while the stronger ultrametric inequality is a defining property of an ultrametric space. Ultrametric distance is defined from p-adic valuation. It is known that ultrametricity is a natural property of spaces in the sparse limit. The implications of this are discussed in this article. Experimental results are presented which quantify how ultrametric a given metric space is. We explore the practical meaningfulness of this property of a space being ultrametric. In particular, we examine the computational implications of widely prevalent and perhaps ubiquitous ultrametricity.

[1]  M. Mézard,et al.  Nature of the Spin-Glass Phase , 1984 .

[2]  Fionn Murtagh,et al.  Structure of hierarchic clusterings: implications for information retrieval and for multivariate data analysis , 1984, Inf. Process. Manag..

[3]  Mirko Krivánek,et al.  NP-hard problems in hierarchical-tree clustering , 1986, Acta Informatica.

[4]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[5]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[6]  A Treves,et al.  On the perceptual structure of face space. , 1997, Bio Systems.

[7]  Hanan Samet,et al.  Properties of Embedding Methods for Similarity Searching in Metric Spaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Gonzalo Navarro,et al.  Probabilistic proximity search: Fighting the curse of dimensionality in metric spaces , 2003, Inf. Process. Lett..

[9]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[10]  Fernando Q. Gouvêa p -adic Numbers , 1993 .

[11]  Fionn Murtagh,et al.  Multidimensional clustering algorithms , 1985 .

[12]  A. D. Gordon,et al.  Correspondence Analysis Handbook. , 1993 .

[13]  Giorgio Parisi,et al.  On the origin of ultrametricity , 2000 .

[14]  Fionn Murtagh,et al.  Counting dendrograms: A survey , 1984, Discret. Appl. Math..

[15]  Peter Willett,et al.  Recent trends in hierarchic document clustering: A critical review , 1988, Inf. Process. Manag..

[16]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[17]  R. Rammal,et al.  On the degree of ultrametricity , 1985 .

[18]  Alexander K. Hartmann Are ground states of 3d ±J spin glasses ultrametric? , 1998 .

[19]  William H. E. Day,et al.  COMPLEXITY THEORY: AN INTRODUCTION FOR PRACTITIONERS OF CLASSIFICATION , 1996 .

[20]  M. Křivánek,et al.  On NP-Hardness in Hierarchical Clustering , 1984 .

[21]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.