Development of optical criteria to discriminate various types of highly turbid lake waters

[1]  B. Nechad,et al.  Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters , 2010 .

[2]  Deyong Sun,et al.  Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China) , 2010, Hydrobiologia.

[3]  Feng Mao,et al.  [Research on ecological security assessment of Dianchi Lake]. , 2010, Huan jing ke xue= Huanjing kexue.

[4]  Deyong Sun,et al.  Parameterization of water component absorption in an inland eutrophic lake and its seasonal variability: a case study in Lake Taihu , 2009 .

[5]  Y. Zha,et al.  A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China , 2009 .

[6]  Jay Gao,et al.  Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: a case study of Lake Taihu. , 2009, Applied optics.

[7]  Deyong Sun,et al.  A Unified Model for Remotely Estimating Chlorophyll a in Lake Taihu, China, Based on SVM and In Situ Hyperspectral Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Junsheng Li,et al.  Modeling Remote-Sensing Reflectance and Retrieving Chlorophyll-a Concentration in Extremely Turbid Case-2 Waters (Lake Taihu, China) , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[9]  A. Morel Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible? , 2009 .

[10]  Helgi Arst,et al.  Application of optical classifications to North European lakes , 2009, Aquatic Ecology.

[11]  J. Gower,et al.  Global monitoring of plankton blooms using MERIS MCI , 2008 .

[12]  Junsheng Li,et al.  A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance , 2008, Environmental monitoring and assessment.

[13]  A. Gitelson,et al.  A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation , 2008 .

[14]  S. Andréfouët,et al.  Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters , 2008, Sensors.

[15]  B. Gentili,et al.  Practical application of the “turbid water” flag in ocean color imagery: Interference with sun-glint contaminated pixels in open ocean , 2008 .

[16]  Wang Xue-jun Measurement and analysis on the apparent optical properties of water in Chaohu Lake. , 2008 .

[17]  B. Franz,et al.  Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach , 2007 .

[18]  Anatoly A. Gitelson,et al.  Remote chlorophyll-a retrieval in turbid, productive estuaries : Chesapeake Bay case study , 2007 .

[19]  Davide D'Alimonte,et al.  A Statistical Index of Bio-Optical Seawater Types , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[20]  David McKee,et al.  Optical water type discrimination and tuning remote sensing band-ratio algorithms: Application to retrieval of chlorophyll and Kd(490) in the Irish and Celtic Seas , 2007 .

[21]  W. Gregg Reports of the International Ocean-Colour Coordinating Group , 2007 .

[22]  Heidi M. Dierssen,et al.  Red and black tides: Quantitative analysis of water‐leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments , 2006 .

[23]  A. Morel,et al.  Improved detection of turbid waters from ocean color sensors information , 2006 .

[24]  Anatoly A. Gitelson,et al.  Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization , 2006 .

[25]  David McKee,et al.  Identification and characterisation of two optical water types in the Irish sea from in situ inherent optical properties and seawater constituents , 2006 .

[26]  Maria Tzortziou,et al.  Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure , 2006 .

[27]  K. Ruddick,et al.  Seaborne measurements of near infrared water‐leaving reflectance: The similarity spectrum for turbid waters , 2006 .

[28]  Chen Yuwei,et al.  Discussion on possible error for pbytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method , 2006 .

[29]  陈宇炜,et al.  浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨 , 2006 .

[30]  Zhang Yun,et al.  Spectral absorption coefficients of particulate matter and chromophoric dissolved organic matter in Meiliang Bay of Lake Taihu , 2006 .

[31]  J. Gower,et al.  Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer , 2005 .

[32]  Michael S Twardowski,et al.  Use of optical scattering to discriminate particle types in coastal waters. , 2005, Applied optics.

[33]  C. Binding,et al.  Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties , 2005 .

[34]  Giorgio Dall'Olmo,et al.  Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. , 2005, Applied optics.

[35]  Zhang Yunlin,et al.  A STUDY ON TOTAL SUSPENDED MATTER IN LAKE TAIHU , 2004 .

[36]  Wang Yong-hua Characteristics of Distribution of Pollutants and Evaluation in Sediment in the East Area of Chaohu Lake , 2004 .

[37]  Tang Jun The Methods of Water Spectra Measurement and Analysis I:Above-Water Method , 2004 .

[38]  Michael S. Twardowski,et al.  Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution , 2004 .

[39]  Giuseppe Zibordi,et al.  Use of the novelty detection technique to identify the range of applicability of empirical ocean color algorithms , 2003, IEEE Trans. Geosci. Remote. Sens..

[40]  Stelvio Tassan,et al.  Variability of light absorption by aquatic particles in the near-infrared spectral region. , 2003, Applied optics.

[41]  Helgi Arst,et al.  Preliminary optical classification of lakes and coastal waters in Estonia and south Finland , 2003 .

[42]  G. Cota,et al.  Remote-sensing reflectance in the Beaufort and Chukchi seas: observations and models. , 2003, Applied optics.

[43]  Mark R. Miller,et al.  Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols , 2003 .

[44]  R. Arnone,et al.  Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. , 2002, Applied optics.

[45]  D. Doxaran,et al.  Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations , 2002 .

[46]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[47]  David Doxaran,et al.  A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters , 2002 .

[48]  Andrew H. Barnard,et al.  A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters , 2001 .

[49]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[50]  R. W. Austin,et al.  Ocean Optics Protocols for Satellite Ocean Color Sensor Validation , 2013 .

[51]  Prieur,et al.  Analysis of variations in ocean color’ , 2000 .

[52]  Jim Aiken,et al.  The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS , 1999 .

[53]  J. Gower,et al.  Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS , 1999 .

[54]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[55]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[56]  André Morel,et al.  Light scattering and chlorophyll concentration in case 1 waters: A reexamination , 1998 .

[57]  D. Siegel,et al.  Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea , 1997 .

[58]  Anatoly A. Gitelson,et al.  Remote sensing of chlorophyll in Lake Kinneret using highspectral-resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development , 1995 .

[59]  M. Perry,et al.  In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance , 1995 .

[60]  I. Robinson,et al.  The relationship between beam attenuation and chlorophyll concentration and reflectance in Antarctic waters , 1995 .

[61]  S. Tassan Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. , 1994, Applied optics.

[62]  B Gentili,et al.  Diffuse reflectance of oceanic waters. II Bidirectional aspects. , 1993, Applied optics.

[63]  Anatoly A. Gitelson,et al.  The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration , 1992 .

[64]  B. G. Mitchell,et al.  Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique , 1990, Defense, Security, and Sensing.

[65]  M. Perry,et al.  Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters , 1989 .

[66]  James W. Brown,et al.  A semianalytic radiance model of ocean color , 1988 .

[67]  H. Gordon,et al.  Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review , 1983 .

[68]  Howard R. Gordon,et al.  Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery , 1983, Lecture Notes on Coastal and Estuarine Studies.

[69]  O. V. Kopelevich,et al.  Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer , 1982 .

[70]  L. Prieur,et al.  An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1 , 1981 .

[71]  H. Gordon,et al.  Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm. , 1979, Applied optics.

[72]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[73]  H. Gordon,et al.  Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. , 1975, Applied optics.

[74]  C. Lorenzen,et al.  DETERMINATION OF CHLOROPHYLL AND PHEO‐PIGMENTS: SPECTROPHOTOMETRIC EQUATIONS1 , 1967 .