Experimental and numerical evaluation of metallic compounds for suppressing cup-burner flames

[1]  D. R. Stull,et al.  Vapor Pressure of Pure Substances. Organic and Inorganic Compounds , 1947 .

[2]  E. Lippincott,et al.  The Vibrational Spectra and Thermodynamic Functions of Lead Tetramethyl, Tin Tetramethyl and Germanium Tetramethyl , 1953 .

[3]  H. G. Wolfhard,et al.  Some limiting oxygen concentrations for diffusion flames in air diluted with nitrogen , 1957 .

[4]  H. Wagner,et al.  Influence of additives on the velocity of laminar flames , 1961 .

[5]  H. Wise,et al.  The effect of metal salts on premixed hydrocarbon—air flames , 1963 .

[6]  C. P. Fenimore,et al.  Chemistry in premixed flames , 1964 .

[7]  C. P. Fenimore,et al.  Modes of inhibiting polymer flammability , 1966 .

[8]  D. R. Bach,et al.  Rayleigh Scattering of Ruby-Laser Light by Neutral Gases* , 1968 .

[9]  D. Benson,et al.  The use of the counterflow diffusion flame in studies of inhibition effectiveness of gaseous and powdered agents , 1970 .

[10]  G. Dixon-Lewis,et al.  Inhibition of hydrogen-air and hydrogen-nitrous oxide flames by halogen compounds , 1971 .

[11]  E. M. Bulewicz,et al.  Catalytic effect of metal additives on free radical recombination rates in H2+O2+N2 flames , 1971 .

[12]  J. W. Hastie,et al.  Molecular Basis of Flame Inhibition. , 1973, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[13]  A. Gilbert,et al.  The Vapor Pressure of Iron Pentacarbonyl , 1974 .

[14]  Homogeneous nucleation in metal vapors. 3. Temperature dependence of the critical supersaturation ratio for iron, lead, and bismuth , 1977 .

[15]  F. G. Roper The prediction of laminar jet diffusion flame sizes: Part I. Theoretical model , 1977 .

[16]  K. Booth,et al.  Measurement of flame-extinguishing concentrations , 1977 .

[17]  H. G. Wolfhard High temperature vapors: By John W. Hastie, Academic Press, New York, 1975. xvi + 480 pp. $35.00 , 1977 .

[18]  E. L. Park,et al.  Nucleate boiling heat transfer of liquid nitrogen from plasma deposited polymer coated surfaces , 1978 .

[19]  Forman A. Williams,et al.  Laminar flow between parallel plates with injection of a reactant at high reynolds number , 1978 .

[20]  N. Peters Local Quenching Due to Flame Stretch and Non-Premixed Turbulent Combustion , 1983 .

[21]  F. Williams,et al.  Aspects of the structure and extinction of diffusion flames in methane-oxygen-nitrogen systems , 1990 .

[22]  Fumiaki Takahashi,et al.  Lifting criteria of jet diffusion flames , 1991 .

[23]  C. Law,et al.  An experimental and numerical study on the global and detailed kinetics of premixed and nonpremixed flames of chloromethane, methane, oxygen and nitrogen , 1992 .

[24]  Larry Goss,et al.  Numerical investigations of transitional H2/N2 jet diffusion flames , 1994 .

[25]  Anthony P. Hamins,et al.  Extinction of nonpremixed flames with halogenated fire suppressants , 1994 .

[26]  Richard G Gann,et al.  Fire suppression system performance of alternative agents in aircraft engine and dry bay laboratory simulations , 1995 .

[27]  C. Sliepcevich,et al.  Synergism between chemical and physical fire-suppressant agents , 1996 .

[28]  G. Linteris,et al.  Experimental study of the inhibition of premixed and diffusion flames by iron pentacarbonyl , 1996 .

[29]  Gregory T. Linteris,et al.  Inhibition of premixed methane-air flames by fluoromethanes , 1996 .

[30]  Anthony P. Hamins,et al.  Inhibition effectiveness of halogenated compounds , 1998 .

[31]  Hai Wang,et al.  Binary CF3Br- and CHF3–inert flame suppressants: effect of temperature on the flame inhibition effectiveness of CF3Br and CHF3 , 1999 .

[32]  V. Babushok,et al.  Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbonyl 1 1 Officia , 1999 .

[33]  V. Babushok,et al.  Inhibitor rankings for alkane combustion , 2000 .

[34]  Valeri I. Babushok,et al.  Flame inhibition by ferrocene and blends of inert and catalytic agents , 2000 .

[35]  G. Linteris,et al.  The role of particles in the inhibition of premixed flames by iron pentacarbonyl 2 1 Official contri , 2000 .

[36]  F. Takahashi,et al.  A reaction kernel hypothesis for the stability limit of methane jet diffusion flames , 2000 .

[37]  F. Takahashi,et al.  Chemical Kinetic Structure of the Reaction Kernel of Methane Jet Diffusion Flames , 2000 .

[38]  F. C. Gouldin,et al.  TEMPERATURE DEPENDENCE OF PHOSPHORUS-BASED FLAME INHIBITION , 2001 .

[39]  H. Chelliah,et al.  Powder-matrix Systems for Safter Handling and Storage of Suppression Agents , 2001 .

[40]  Valeri I. Babushok,et al.  Inhibition of premixed methane flames by manganese and tin compounds Official contribution of NI , 2002 .

[41]  G. Linteris,et al.  The role of particles in the inhibition of counterflow diffusion flames by iron pentacarbonyl , 2002 .

[42]  V. Babushok,et al.  Effective Non-Toxic Metallic Fire Suppressants. Final Report (NISTIR 6875) , 2002 .

[43]  V. Babushok,et al.  Temperature regions of optimal chemical inhibition of premixed flames , 2002 .

[44]  A. Hamins,et al.  Suppression limits of low strain rate non-premixed methane flames , 2003 .