Modeling visual recognition from neurobiological constraints

Neurobiological data from the cerebral cortex of the macaque monkey suggest a model of object recognition that is a series of four computational stages. These are executed in seven major hierarchically arranged areas of processing, each area with an input and an output layer of cells. The first computational stage occurs within early visual cortex and involves the first two cortical areas. Here it appears that boundaries between image regions and logical groupings of local oriented image elements that ''belong'' together are computed. These processes segregate image attributes that can then be treated as arising from the same object. The next three visual cortical areas execute the second computational stage and display sensitivity to an ever increasing complexity and variety of visual shape features (e.g., T junctions, concentric rings, spotted triangle shape). The third stage of processing seems to utilize combinations of these shape features to establish selectivity to what we refer to as object-feature instances (i.e., the approximate appearance of a small number of object attributes seen under particular viewing conditions). Cells in these areas tolerate change in position but show only limited generalization for change in retinal size, orientation, or perspective view. The fourth computational process occurs within the final cortical areas and gives rise to cell selectivity showing object constancy across size and orientation. This process probably occurs through pooling of the outputs of cells responsive to different instances of the same object view. Importantly, constancy across perspective view (i.e., the transition between viewer-centred and object-centred representation) does not seem to be completed except by a small percentage of cells. Synaptic changes encompassing various associative (e.g., Hebbian) and non-associative (e.g., decorrelating) procedures may allow cells throughout the stages of processing to become tuned to frequently experienced image attributes, shapes, and objects. Associative learning procedures operating over short time periods may underlie the progressive generalization over changing viewing conditions. Constancy across position, orientation, size, and, finally, perspective view and object parts is established slowly as each area pools the appropriate outputs of the less specific cells in the preceding area. After such learning procedures, the visual system can operate to resolve the appearance of unexpected objects primarily in a feedforward manner, without the need for lateral inhibition or feedback loops, a property few models embody. This feedforward processing does not deny the possibility that top-down influences, although poorly understood, may play a role in nulling image aspects that are predictable in appearance and/or not the object of attention such that only features containing relevant discriminatory information are processed further.

[1]  Y. Miyashita,et al.  Configurational encoding of complex visual forms by single neurons of monkey temporal cortex , 1993, Neuropsychologia.

[2]  Margaret T. T. Wong-Riley,et al.  Projections from the dorsal lateral geniculate nucleus to prestriate cortex in the squirrel monkey as demonstrated by retrograde transport of horseradish peroxidase , 1976, Brain Research.

[3]  J. Fuster,et al.  Visual response latencies in temporal lobe structures as a function of stimulus information load. , 1990, Behavioral neuroscience.

[4]  E. Rolls Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984, Human neurobiology.

[5]  R Gattass,et al.  Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[7]  E. Peterhans,et al.  Subjective contours - bridging the gap between psychophysics and physiology , 1991, Trends in Neurosciences.

[8]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[9]  A. J. Mistlin,et al.  Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. , 1984, Human neurobiology.

[10]  M. Hasselmo,et al.  The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey , 1989, Behavioural Brain Research.

[11]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[12]  T. Sato,et al.  Effects of attention and stimulus interaction on visual responses of inferior temporal neurons in macaque. , 1988, Journal of neurophysiology.

[13]  H. Sakai,et al.  Enhancement of inferior temporal neurons during visual discrimination. , 1987, Journal of neurophysiology.

[14]  R A Johnston,et al.  Understanding face recognition with an interactive activation model. , 1990, British journal of psychology.

[15]  G. Rhodes,et al.  Identification and ratings of caricatures: Implications for mental representations of faces , 1987, Cognitive Psychology.

[16]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[18]  Jari K. Hietanen,et al.  Visual processing in a primate temporal association cortex : insensitivity to self-induced motion , 1993 .

[19]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[20]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[21]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[22]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  R. Freeman,et al.  Oscillatory discharge in the visual system: does it have a functional role? , 1992, Journal of neurophysiology.

[24]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[25]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[27]  M. Young,et al.  On oscillating neuronal responses in the visual cortex of the monkey. , 1992, Journal of neurophysiology.

[28]  P. Fiildihk,et al.  Forming sparse representations by local anti-Hebbian learning , 1990 .

[29]  S. Zeki,et al.  The third visual complex of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[30]  E. Rolls,et al.  Potentiation of neuronal responses to natural visual input paired with postsynaptic activation in the hippocampus of the awake monkey , 1991, Neuroscience Letters.

[31]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[32]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[33]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[34]  J. A. Horel,et al.  The effects of number of stimuli and prior exposure on performance of concurrent visual discriminations during suppression of inferotemporal cortex with cold , 1993, Behavioural Brain Research.

[35]  G. Edelman Group selection and phasic reentrant signaling a theory of higher brain function , 1982 .

[36]  D G Stork,et al.  Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? , 1990, Journal of the Optical Society of America. A, Optics and image science.

[37]  R. von der Heydt,et al.  Periodic-pattern-selective cells in monkey visual cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Keiji Tanaka,et al.  Selective neuronal responses to complex visual object-features in Macaque V4 , 1991 .

[39]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  E. Rolls,et al.  Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey , 1985, Vision Research.

[41]  R. Desimone,et al.  Predicting responses of nonlinear neurons in monkey striate cortex to complex patterns , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  A. J. Mistlin,et al.  Specialized face processing and hemispheric asymmetry in man and monkey: Evidence from single unit and reaction time studies , 1988, Behavioural Brain Research.

[43]  Geoffrey E. Hinton,et al.  The appeal of parallel distributed processing , 1986 .

[44]  D. Amaral,et al.  Memory and the Hippocampus , 1989 .

[45]  J. Konorski Integrative activity of the brain , 1967 .

[46]  C B Cave,et al.  Memory: organization of brain systems and cognition. , 1993, Cold Spring Harbor symposia on quantitative biology.

[47]  Rolls Et Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. , 1984 .

[48]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[49]  Allen M. Waxman,et al.  Adaptive 3-D Object Recognition from Multiple Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[51]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[52]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  G. Blasdel,et al.  Orientation selectivity, preference, and continuity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  B J Richmond,et al.  Interactive effects among several stimulus parameters on the responses of striate cortical complex cells. , 1991, Journal of neurophysiology.

[55]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[56]  Keiji Tanaka,et al.  Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. , 1988, Journal of neurophysiology.

[57]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[59]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[60]  Allen M. Waxman,et al.  Spreading activation layers, visual saccades, and invariant representations for neural pattern recognition systems , 1989, Neural Networks.

[61]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[62]  L. Brothers,et al.  A Neuroethological Framework for the Representation of Minds , 1992, Journal of Cognitive Neuroscience.

[63]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[64]  N. Swindale Is the cerebral cortex modular? , 1990, Trends in Neurosciences.

[65]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[66]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[67]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[68]  Hisao Nishijo,et al.  Monkey hippocampal neuron responses related to spatial and non-spatial influence , 1993, Neuroscience Letters.

[69]  Eric L. Schwartz,et al.  Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding , 1980, Vision Research.

[70]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[71]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[72]  E. Rolls,et al.  Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey , 1985, Brain Research.

[73]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[74]  Stephen Grossberg,et al.  Competitive Learning: From Interactive Activation to Adaptive Resonance , 1987, Cogn. Sci..

[75]  D. Perrett,et al.  Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. , 1994, Cerebral cortex.

[76]  Glyn W. Humphreys,et al.  Cascade processes in picture identification , 1988 .

[77]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[78]  M. Goodale,et al.  Chapter 28 Visual pathways to perception and action , 1993 .

[79]  M. Goodale,et al.  Visual pathways to perception and action. , 1993, Progress in brain research.

[80]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[81]  W. Fries The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[82]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[83]  Tetsuo Sugimoto,et al.  Extrageniculate projections to the visual cortex in the macaque monkey: an HRP study , 1981, Brain Research.

[84]  R. Wurtz,et al.  Visual responses of inferior temporal neurons in awake rhesus monkey. , 1983, Journal of neurophysiology.

[85]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[86]  R. Desimone,et al.  Attentional control of visual perception: cortical and subcortical mechanisms. , 1990, Cold Spring Harbor symposia on quantitative biology.

[87]  Malcolm P. Young Modules for pattern recognition , 1993, Current Biology.

[88]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[89]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  P. Földiák,et al.  The ‘Ideal Homunculus’: Statistical Inference from Neural Population Responses , 1993 .

[91]  David I. Perrett,et al.  Neurophysiology of shape processing , 1993, Image Vis. Comput..

[92]  I. Riches,et al.  The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  S. Zeki,et al.  Colour coding in the superior temporal sulcus of rhesus monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[94]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[95]  Karl J. Friston,et al.  The colour centre in the cerebral cortex of man , 1989, Nature.

[96]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[97]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[98]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  D. Fitzpatrick,et al.  The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. III. Response predictions of a channel model with multiple spatial-to-temporal filters. , 1991, Journal of neurophysiology.

[101]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[102]  R Desimone,et al.  Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey. , 1986, Journal of neurophysiology.

[103]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. I. Responses to two-dimensional stimuli. , 1991, Journal of neurophysiology.

[104]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[105]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[106]  A. Parker,et al.  Spatial properties of neurons in the monkey striate cortex , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[107]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[108]  David Zipser,et al.  Feature Discovery by Competive Learning , 1986, Cogn. Sci..

[109]  L. Optican,et al.  Lateral geniculate neurons in behaving primates. II. Encoding of visual information in the temporal shape of the response. , 1991, Journal of neurophysiology.

[110]  M. Yukie,et al.  Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys , 1981, The Journal of comparative neurology.

[111]  Kevan A. C. Martin,et al.  Parallel pathways converge , 1992, Current Biology.

[112]  K. Yoshida,et al.  The afferent and efferent organization of the lateral geniculo‐prestriate pathways in the macaque monkey , 1981, The Journal of comparative neurology.

[113]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[114]  G. Blasdel,et al.  Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  H. Barlow The neuron doctrine in perception. , 1995 .

[116]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[117]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[118]  M. Tovée,et al.  Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli , 1992, Neuroreport.

[119]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[120]  R. Desimone,et al.  Activity of neurons in anterior inferior temporal cortex during a short- term memory task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  J. Fuster Inferotemporal units in selective visual attention and short-term memory. , 1990, Journal of neurophysiology.

[122]  P A Salin,et al.  Visual activity in areas V3a and V3 during reversible inactivation of area V1 in the macaque monkey. , 1991, Journal of neurophysiology.

[123]  Leslie G. Ungerleider,et al.  Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys , 1993, Visual Neuroscience.

[124]  P. König,et al.  Why does the cortex oscillate? , 1992, Current Biology.

[125]  E. Yeterian,et al.  Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections , 1978, Brain Research.

[126]  C. Gross Contribution of striate cortex and the superior colliculus to visual function in area MT, the superior temporal polysensory area and inferior temporal cortex , 1991, Neuropsychologia.

[127]  P. Foldiak,et al.  Adaptive network for optimal linear feature extraction , 1989, International 1989 Joint Conference on Neural Networks.

[128]  DH Hubel,et al.  Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[130]  F. Wörgötter,et al.  Spatiotemporal mechanisms in receptive fields of visual cortical simple cells: a model. , 1991, Journal of neurophysiology.

[131]  L. Brothers,et al.  Mesial temporal neurons in the macaque monkey with responses selective for aspects of social stimuli , 1993, Behavioural Brain Research.

[132]  Dennis Gabor,et al.  Theory of communication , 1946 .

[133]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[134]  W. Ritchie Russell,et al.  Dissociated visual perceptual and spatial deficits in focal lesions of the right hemisphere , 1969 .

[135]  M. Goodale Visual pathways supporting perception and action in the primate cerebral cortex , 1993, Current Opinion in Neurobiology.

[136]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[137]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[138]  Salvatore Squatrito,et al.  ‘Real-motion’ cells in the primary visual cortex of macaque monkeys , 1984, Brain Research.

[139]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[140]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[141]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[142]  B L Finlay,et al.  Quantitative studies of single-cell properties in monkey striate cortex. IV. Corticotectal cells. , 1976, Journal of neurophysiology.

[143]  D I Perrett,et al.  Frameworks of analysis for the neural representation of animate objects and actions. , 1989, The Journal of experimental biology.

[144]  C. Gross,et al.  Representation of visual stimuli in inferior temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[145]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[146]  R. Weller,et al.  Subcortical connections of subdivisions of inferior temporal cortex in squirrel monkeys , 1993, Visual Neuroscience.

[147]  Allen M. Waxman,et al.  Learning Aspect Graph Representations from View Sequences , 1989, NIPS.

[148]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[149]  D. Perrett,et al.  Perception and recognition of photographic quality facial caricatures: Implications for the recognition of natural images , 1991 .

[150]  J. Bullier,et al.  Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. , 1989, Journal of neurophysiology.

[151]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[152]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[153]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[154]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[155]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[156]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[157]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[158]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[159]  B J Richmond,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. , 1987, Journal of neurophysiology.

[160]  M. Hasselmo,et al.  The responses of neurons in the cortex in the superior temporal sulcus of the monkey to band-pass spatial frequency filtered faces , 1987, Vision Research.

[161]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[162]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[163]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[164]  C. R. Michael,et al.  Columnar organization of color cells in monkey's striate cortex. , 1981, Journal of neurophysiology.