(Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones)

We discuss and give elementary proofs of results of Brion and of Lawrence– Varchenko on the lattice-point enumerator generating functions for polytopes and cones. This largely expository note contains a new proof of Brion’s Formula using irrational decompositions, and a generalization of the Lawrence–Varchenko formula.

[1]  Matthias Köppe,et al.  A Primal Barvinok Algorithm Based on Irrational Decompositions , 2006, SIAM J. Discret. Math..

[2]  Alexander I. Barvinok,et al.  A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.

[3]  Jim Lawrence,et al.  Valuations and polarity , 1988, Discret. Comput. Geom..

[4]  P. McMullen The polytope algebra , 1989 .

[5]  J. Lawrence Polytope volume computation , 1991 .

[6]  W. Fulton,et al.  Lefschetz-riemann-roch for singular varieties , 1979 .

[7]  P. McMullen A COURSE IN CONVEXITY (Graduate Studies in Mathematics 54) By ALEXANDER BARVINOK: 366 pp., US$59.00, ISBN 0-8218-2968-8 (American Mathematical Society, Providence, RI, 2002) , 2003 .

[8]  Masanori Ishida POLYHEDRAL LAURENT SERIES AND BRION’S EQUALITIES , 1990 .

[9]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[10]  W. Volland Ein Fortsetzungssatz für additive Eipolyederfunktionale im euklidischen Raum , 1957 .

[11]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[12]  H. Groemer,et al.  ON THE EXTENSION OF ADDITIVE FUNCTIONALS ON CLASSES OF CONVEX SETS , 1978 .

[13]  Matthias Ko¨ppe A Primal Barvinok Algorithm Based on Irrational Decompositions , 2007 .

[14]  Frank Sottile,et al.  Irrational proofs for three theorems of Stanley , 2007, Eur. J. Comb..

[15]  A. N. Varchenko,et al.  Combinatorics and topology of the disposition of affine hyperplanes in real space , 1987 .