Geolocalization using skylines from omni-images

We propose a novel method to accurately estimate the global position of a moving car using an omnidirectional camera and untextured 3D city models. The camera is oriented upwards to capture images of the immediate skyline, which is generally unique and serves as a fingerprint for a specific location in a city. Our goal is to estimate global position by matching skylines extracted from omni-directional images to skyline segments from coarse 3D city models. Our contributions include a sky segmentation algorithm for omni-directional images using graph cuts and a novel approach for matching omni-image skylines to 3D models.

[1]  Luc Van Gool,et al.  Fast Compact City Modeling for Navigation Pre-Visualization , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Aubrey K. Dunne,et al.  A Comparison of New Generic Camera Calibration with the Standard Parametric Approach , 2007, MVA.

[3]  Matthias Trapp,et al.  A Generalization Approach for 3D Viewing Deformations of Single-Center Projections , 2008, GRAPP.

[4]  Tomás Pajdla Stereo with Oblique Cameras , 2004, International Journal of Computer Vision.

[5]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[7]  M. Sheelagh T. Carpendale,et al.  Single camera flexible projection , 2007, NPAR '07.

[8]  Robert Pless,et al.  Geolocating Static Cameras , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  Derek Hoiem,et al.  Learning CRFs Using Graph Cuts , 2008, ECCV.

[10]  Richard Szeliski,et al.  Building Rome in a day , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[11]  Roberto Cipolla,et al.  An Image-Based System for Urban Navigation , 2004, BMVC.

[12]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[13]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[14]  Robert Pless,et al.  Using many cameras as one , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[15]  Jan-Michael Frahm,et al.  Towards Urban 3D Reconstruction from Video , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[16]  Gérard G. Medioni,et al.  Map-based localization using the panoramic horizon , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[17]  Alexei A. Efros,et al.  Recovering Surface Layout from an Image , 2007, International Journal of Computer Vision.

[18]  Jian Sun,et al.  SkyFinder: attribute-based sky image search , 2009, ACM Trans. Graph..

[19]  Jim X. Chen,et al.  Nonlinear perspective projections and magic lenses: 3D view deformation , 2005, IEEE Computer Graphics and Applications.

[20]  Wei Zhang,et al.  Image Based Localization in Urban Environments , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[21]  Thomas Strothotte,et al.  Camera textures , 2006, GRAPHITE '06.

[22]  Andrew Blake,et al.  Multiscale Categorical Object Recognition Using Contour Fragments , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Shree K. Nayar,et al.  The Raxel Imaging Model and Ray-Based Calibration , 2005, International Journal of Computer Vision.

[24]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[25]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[26]  Konrad Tollmar,et al.  Searching the Web with mobile images for location recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[27]  Seth J. Teller,et al.  Wide-Area Egomotion Estimation from Known 3D Structure , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Margaret M. Fleck Perspective Projection: The Wrong Imaging Model , 1995 .

[29]  Yiannis Aloimonos,et al.  Polydioptric camera design and 3D motion estimation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[30]  Baining Guo,et al.  Real-time multi-perspective rendering on graphics hardware , 2006, SIGGRAPH '06.

[31]  Peter F. Sturm,et al.  Towards complete generic camera calibration , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Pushmeet Kohli,et al.  Exact inference in multi-label CRFs with higher order cliques , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Shree K. Nayar,et al.  A perspective on distortions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[34]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[35]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  J. Meguro,et al.  Development of positioning technique using omni-directional IR camera and aerial survey data , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[37]  Jan-Michael Frahm,et al.  Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Yiannis Aloimonos,et al.  Directions of Motion Fields are Hardly Ever Ambiguous , 2004, International Journal of Computer Vision.

[39]  Srikumar Ramalingam,et al.  Generic Imaging Models: Calibration and 3D Reconstruction Algorithms. (Modèles de formation d'image génériques : calibrage et algorithmes de reconstruction 3D) , 2006 .

[40]  Bernard Péroche,et al.  Fast non-linear projections using graphics hardware , 2008, I3D '08.

[41]  Michael Bosse,et al.  Calibrated, Registered Images of an Extended Urban Area , 2003, International Journal of Computer Vision.

[42]  Hans-Hellmut Nagel,et al.  The coupling of rotation and translation in motion estimation of planar surfaces , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.