Finite element analysis of dynamic concrete-to-rebar bond experiments in the push-in configuration

Abstract Finite element analysis of concrete-to-rebar bond specimens under dynamic loading was conducted. This involved detailed modelling of the reinforcing steel bar ribs and the concrete keys in between. The modelling aimed to realise insight into the local structural phenomena and create a solid base for the prediction of bond behaviour under varying conditions. The analysis was performed in 3D with the explicit finite element code LS-Dyna. The proposed Soil and Foam Failure material model for concrete is described and definition of the material parameters is discussed. The numerical results are compared to experimental data obtained during dynamic push-in bond experiments carried out at the Technische Universitat Dresden. Strain signals, slip measurements, bond stresses and crack patterns are analysed. The obtained signals are decomposed based on fundamentals of wave propagation. Significant influential factors like the experimental set-up geometry are hence identified. The capability of the model to predict key aspects of bond behaviour under dynamic loading is demonstrated and its applicability for future parametric studies is highlighted.

[1]  Pietro G. Gambarova,et al.  Bond and splitting in reinforced concrete: test results on bar pull-out , 1996 .

[2]  B. Song,et al.  Split Hopkinson (Kolsky) Bar: Design, Testing and Applications , 2010 .

[3]  Konrad Zilch,et al.  Bemessung im konstruktiven Betonbau , 2010 .

[4]  Josef Hegger,et al.  Eurocode 2: Bemessung und Konstruktion von Stahlbeton‐ und Spannbetontragwerken – Teil 1‐1: Allgemeine Bemessungsregeln und Regeln für den Hochbau:2011‐01 mit A1‐Änderung:2015‐03 , 2016 .

[5]  Herbert Kolsky,et al.  Stress Waves in Solids , 2003 .

[6]  Gallus Rehm,et al.  Über die Grundlagen des Verbundes zwischen Stahl und Beton , 1961 .

[7]  Aurelio Muttoni,et al.  Analytical Modeling of the Pre- and Postyield Behavior of Bond in Reinforced Concrete , 2007 .

[8]  K. Graff Wave Motion in Elastic Solids , 1975 .

[9]  Hans W. Reinhardt,et al.  Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects , 1991 .

[10]  Joško Ožbolt,et al.  Discrete Bond Element for 3D Finite Element Analysis of Reinforced Concrete tructures , 2002 .

[11]  Behavior of bond Under Dynamic Loading , 1962 .

[12]  P. Rossi A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates , 1991 .

[13]  L. Laine,et al.  3D FE-simulation of high-velocity fragment perforation of reinforced concrete slabs , 1999 .

[14]  Vitelmo V. Bertero,et al.  Local bond stress-slip relationships of deformed bars under generalized excitations , 1982 .

[15]  Qingming Li,et al.  About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test , 2003 .

[16]  G. König,et al.  Zur Rißbreitenbeschränkung bei voll oder beschränkt vorgespannten Betonbrücken. , 1989 .

[17]  Michael Auer Ein Verbundmodell für Stahlbeton unter Berücksichtigung der Betonschädigung , 2015 .

[18]  Yuh-Shiou Tai,et al.  Numerical simulation: The dynamic behavior of reinforced concrete plates under normal impact , 2006 .

[19]  A. Gjelsvik,et al.  Coefficient of Friction for Steel on Concrete at High Normal Stress , 1990 .

[20]  Yukimasa Goto,et al.  CRACKS FORMED IN CONCRETE AROUND DEFORMED TENSION BARS , 1971 .

[21]  Wai-Fah Chen Plasticity in reinforced concrete , 1982 .

[22]  H. Hao,et al.  Modelling of compressive behaviour of concrete-like materials at high strain rate , 2008 .

[23]  M. Meyers Dynamic Behavior of Materials , 1994 .

[24]  Demetrios M. Cotsovos,et al.  Numerical investigation of concrete subjected to high rates of uniaxial tensile loading , 2008 .

[25]  S. J. Green,et al.  Static Constitutive Relations for Concrete , 1973 .