Segmentation of gliomas in magnetic resonance images using recurrent neural networks
暂无分享,去创建一个
Stefan Grivalsky | Martin Tamajka | Wanda Benesova | Wanda Benesova | Stefan Grivalsky | Martin Tamajka
[1] Jürgen Schmidhuber,et al. Long Short-Term Memory , 1997, Neural Computation.
[2] Christos Davatzikos,et al. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features , 2017, Scientific Data.
[3] A. Verkhratsky,et al. Glial Neurobiology: A Textbook , 2007 .
[4] Jian Sun,et al. Identity Mappings in Deep Residual Networks , 2016, ECCV.
[5] Kaiming He,et al. Group Normalization , 2018, ECCV.
[6] Andriy Myronenko,et al. 3D MRI brain tumor segmentation using autoencoder regularization , 2018, BrainLes@MICCAI.
[7] Konstantinos Kamnitsas,et al. Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation , 2017, BrainLes@MICCAI.
[8] G. Reifenberger,et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.
[9] Thomas Brox,et al. U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.
[10] Geoffrey E. Hinton,et al. Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[11] Konstantinos Kamnitsas,et al. Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..