Electrostatic interactions in a peptide--RNA complex.

[1]  T. Xia,et al.  Designed arginine-rich RNA-binding peptides with picomolar affinity. , 2002, Journal of the American Chemical Society.

[2]  J. M. Scholtz,et al.  Osmolyte effects on helix formation in peptides and the stability of coiled‐coils , 2002, Protein science : a publication of the Protein Society.

[3]  R. L. Baldwin,et al.  The enthalpy of the alanine peptide helix measured by isothermal titration calorimetry using metal-binding to induce helix formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Draper,et al.  A thermodynamic framework for Mg2+ binding to RNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Y. Shamoo,et al.  Structure-based analysis of protein-RNA interactions using the program ENTANGLE. , 2001, Journal of molecular biology.

[6]  I. Baskakov,et al.  The osmophobic effect: natural selection of a thermodynamic force in protein folding. , 2001, Journal of molecular biology.

[7]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[8]  D. Draper,et al.  Mg(2+) binding to tRNA revisited: the nonlinear Poisson-Boltzmann model. , 2000, Journal of molecular biology.

[9]  D. Draper,et al.  Contributions of basic residues to ribosomal protein L11 recognition of RNA. , 2000, Journal of molecular biology.

[10]  Barry Honig,et al.  Calculating the electrostatic properties of RNA provides new insights into molecular interactions and function , 1999, Nature Structural Biology.

[11]  D. Draper Themes in RNA-protein recognition. , 1999, Journal of molecular biology.

[12]  T. Lohman,et al.  The importance of coulombic end effects: experimental characterization of the effects of oligonucleotide flanking charges on the strength and salt dependence of oligocation (L8+) binding to single-stranded DNA oligomers. , 1999, Biophysical journal.

[13]  An-Suei Yang,et al.  Electrostatic contributions to the binding free energy of the lambdacI repressor to DNA. , 1998, Biophysical journal.

[14]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[15]  Jack Greenblatt,et al.  NMR Structure of the Bacteriophage λ N Peptide/boxB RNA Complex: Recognition of a GNRA Fold by an Arginine-Rich Motif , 1998, Cell.

[16]  I. Baskakov,et al.  Forcing Thermodynamically Unfolded Proteins to Fold* , 1998, The Journal of Biological Chemistry.

[17]  M. Weiss,et al.  RNA recognition by a bent alpha-helix regulates transcriptional antitermination in phage lambda. , 1997, Biochemistry.

[18]  H. Chen,et al.  An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch. , 1997, Genes & development.

[19]  R. L. Baldwin,et al.  Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. , 1997, Biochemistry.

[20]  T. Lohman,et al.  Thermodynamics of oligoarginines binding to RNA and DNA. , 1997, Biochemistry.

[21]  P. V. von Hippel,et al.  Complexes of N antitermination protein of phage lambda with specific and nonspecific RNA target sites on the nascent transcript. , 1997, Biochemistry.

[22]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[23]  T. Lohman,et al.  Large electrostatic differences in the binding thermodynamics of a cationic peptide to oligomeric and polymeric DNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Court,et al.  Transcription antitermination: the λ paradigm updated , 1995 .

[25]  B Honig,et al.  Salt effects on polyelectrolyte–ligand binding: Comparison of Poisson–Boltzmann, and limiting law/counterion binding models , 1995, Biopolymers.

[26]  Kim A. Sharp,et al.  Polyelectrolyte electrostatics: Salt dependence, entropic, and enthalpic contributions to free energy in the nonlinear Poisson–Boltzmann model , 1995 .

[27]  A. Frankel,et al.  Structural variety of arginine-rich RNA-binding peptides. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[29]  P. Moore,et al.  The sarcin/ricin loop, a modular RNA. , 1995, Journal of molecular biology.

[30]  J. Bond,et al.  Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers. , 1995, Biophysical journal.

[31]  A. Frankel,et al.  Costabilization of peptide and RNA structure in an HIV Rev peptide-RRE complex. , 1994, Biochemistry.

[32]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[33]  Barry Honig,et al.  Salt Effects on Protein-DNA Interactions: The λcI Repressor and EcoRI Endonuclease , 1994 .

[34]  B Honig,et al.  Salt effects on ligand-DNA binding. Minor groove binding antibiotics. , 1994, Journal of molecular biology.

[35]  R. L. Baldwin,et al.  Effect of a single aspartate on helix stability at different positions in a neutral alanine‐based peptide , 1993, Protein science : a publication of the Protein Society.

[36]  A. Frankel,et al.  Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J A McCammon,et al.  Poisson-Boltzmann analysis of the lambda repressor-operator interaction. , 1992, Biophysical journal.

[38]  D. Turner,et al.  Context dependence of hydrogen bond free energy revealed by substitutions in an RNA hairpin. , 1992, Science.

[39]  I. Tinoco,et al.  Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. , 1992, Nucleic acids research.

[40]  R. L. Baldwin,et al.  Parameters of helix–coil transition theory for alanine‐based peptides of varying chain lengths in water , 1991, Biopolymers.

[41]  H. Heus,et al.  Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. , 1991, Science.

[42]  Bhyravabhotla Jayaram,et al.  A theoretical study of polyelectrolyte effects in protein-DNA interactions: Monte Carlo free energy simulations on the ion atmosphere contribution to the thermodynamics of .lambda. repressor-operator complex formation , 1991 .

[43]  S. Sarkar,et al.  IQ and Heredity , 1991, Science.

[44]  R. L. Baldwin,et al.  Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[45]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[46]  D. Hudson,et al.  Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. , 1991, Genes & development.

[47]  T. Lohman,et al.  Thermodynamic extent of counterion release upon binding oligolysines to single-stranded nucleic acids. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. Record,et al.  Monte Carlo description of oligoelectrolyte properties of DNA oligomers: range of the end effect and the approach of molecular and thermodynamic properties to the polyelectrolyte limits. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. L. Baldwin,et al.  Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[50]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[51]  D. Turner,et al.  Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. , 1983, Biochemistry.

[52]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[53]  T. Lohman,et al.  Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity , 1978, Quarterly Reviews of Biophysics.

[54]  T. Lohman,et al.  Ion effects on ligand-nucleic acid interactions. , 1976, Journal of molecular biology.

[55]  P. V. Hippel,et al.  Ion effects on the solution structure of biological macromolecules , 1969 .

[56]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[57]  H. A. Sober,et al.  Protein-nucleic acid interactions. II. Oligopeptide-polyribonucleotide binding studies. , 1967, Biochemistry.

[58]  B. Zimm,et al.  Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains , 1959 .

[59]  William H. Press,et al.  Numerical recipes in C , 2002 .

[60]  M. Record,et al.  Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: a practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and osmotic effects of salts. , 1998, Advances in protein chemistry.

[61]  M. Record,et al.  Salt-nucleic acid interactions. , 1995, Annual review of physical chemistry.

[62]  H. Scheraga,et al.  Helix‐coil stability constants for the naturally occurring amino acids in water. XXIV. Half‐cystine parameters from random poly(hydroxybutylglutamine‐CO‐S‐methylthio‐L‐cysteine) , 1990 .

[63]  T. Lohman,et al.  Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. , 1988, Biochemistry.

[64]  D. Turner,et al.  RNA structure prediction. , 1988, Annual review of biophysics and biophysical chemistry.