Approximate Integrated Likelihood via ABC methods

We propose a novel use of a recent new computational tool for Bayesian inference, namely the Approximate Bayesian Computation (ABC) methodology. ABC is a way to handle models for which the likelihood function may be intractable or even unavailable and/or too costly to evaluate; in particular, we consider the problem of eliminating the nuisance parameters from a complex statistical model in order to produce a likelihood function depending on the quantity of interest only. Given a proper prior for the entire vector parameter, we propose to approximate the integrated likelihood by the ratio of kernel estimators of the marginal posterior and prior for the quantity of interest. We present several examples.

[1]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[2]  Thomas A. Severini Likelihood ratio statistics based on an integrated likelihood , 2010 .

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  Luigi Pace,et al.  Principles of statistical inference : from a neo-Fisherian perspective , 1997 .

[5]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[6]  A. Gelfand,et al.  A Bayesian coregionalization approach for multivariate pollutant data , 2003 .

[7]  John D. Kalbfleisch,et al.  Application of Likelihood Methods to Models Involving Large Numbers of Parameters , 1970 .

[8]  Andrew T. A. Wood,et al.  Laplace approximations for hypergeometric functions with matrix argument , 2002 .

[9]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[10]  T. Lancaster The incidental parameter problem since 1948 , 2000 .

[11]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[12]  T. Severini Likelihood Methods in Statistics , 2001 .

[13]  David Allingham,et al.  Bayesian estimation of quantile distributions , 2009, Stat. Comput..

[14]  G. D. Rayner,et al.  Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions , 2002, Stat. Comput..

[15]  K. Mengersen,et al.  Robustness of ranking and selection rules using generalised g-and-k distributions , 1997 .

[16]  R. Plevin,et al.  Approximate Bayesian Computation in Evolution and Ecology , 2011 .

[17]  T. Severini Integrated likelihood functions for non-Bayesian inference , 2007 .

[18]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[19]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[20]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[21]  R. Wolpert,et al.  Integrated likelihood methods for eliminating nuisance parameters , 1999 .

[22]  Yanan Fan,et al.  Likelihood-Free MCMC , 2011 .

[23]  Ronald W. Butler,et al.  Saddlepoint Approximation for Multivariate Cumulative Distribution Functions and Probability Computations in Sampling Theory and Outlier Testing , 1998 .

[24]  Brunero Liseo,et al.  The Elimination of Nuisance Parameters1 , 2005 .

[25]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[26]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[27]  J. Ghosh Elimination of Nuisance Parameters , 1988 .

[28]  Helen MacGillivray,et al.  Weighted quantile-based estimation for a class of transformation distributions , 2002 .

[29]  Thomas A. Severini FREQUENCY PROPERTIES OF INFERENCES BASED ON AN INTEGRATED LIKELIHOOD FUNCTION , 2011 .