NIR emission of cyclic [4]rotaxanes containing π-extended porphyrin chromophores.

The photophysical properties of a Cu(I) [4]rotaxane 4(4+) and of the demetalated [4]rotaxane 3 have been determined and compared to those of the component Zn porphyrin 2. All samples emit in the NIR region (700-1200 nm). The luminescence from the interlocked structures is bathochromically shifted with respect to 2 and displays a lower emission quantum yield, much lower for 4(4+) than for 3. The occurrence of intra-molecular electron or energy transfer is excluded and the decrease in luminescence yield is discussed in terms of the energy gap law and of electronic interactions between components of the cyclic interlocked structure. In toluene a dual emission behavior, similar to that of 2, is observed for 3 and ascribed to the presence of two non-equilibrated excited states, π-π* and CT in nature with lifetimes of 0.80 and 0.14 ns, respectively.

[1]  Hao Li,et al.  Photoinduced memory effect in a redox controllable bistable mechanical molecular switch. , 2012, Angewandte Chemie.

[2]  J. Sauvage,et al.  Near-infrared dual luminescence from an extended zinc porphyrin. , 2012, Chemical communications.

[3]  C. Campbell,et al.  Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. , 2011, Angewandte Chemie.

[4]  J Fraser Stoddart,et al.  Chemical topology: complex molecular knots, links, and entanglements. , 2011, Chemical reviews.

[5]  Alberto Credi,et al.  Light operated molecular machines. , 2011, Chemical communications.

[6]  J. Sauvage,et al.  A cyclic [4]rotaxane that behaves as a switchable molecular receptor: formation of a rigid scaffold from a collapsed structure by complexation with copper(I) ions. , 2010, Angewandte Chemie.

[7]  J. F. Stoddart,et al.  pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles. , 2010, Journal of the American Chemical Society.

[8]  K. Rissanen,et al.  Templated synthesis of cyclic [4]rotaxanes consisting of two stiff rods threaded through two bis-macrocycles with a large and rigid central plate as spacer. , 2010, Journal of the American Chemical Society.

[9]  J. Lux,et al.  A rapidly shuttling copper-complexed [2]rotaxane with three different chelating groups in its axis. , 2009, Angewandte Chemie.

[10]  R. Grubbs,et al.  Switching and extension of a [c2]daisy-chain dimer polymer. , 2009, Journal of the American Chemical Society.

[11]  J. F. Stoddart,et al.  The master of chemical topology. , 2009, Chemical Society reviews.

[12]  Jonathan A. Faiz,et al.  Design and synthesis of porphyrin-containing catenanes and rotaxanes. , 2009, Chemical Society reviews.

[13]  Lei Fang,et al.  An acid-base-controllable [c2]daisy chain. , 2008, Angewandte Chemie.

[14]  S. Lincoln,et al.  The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. , 2008, Chemical communications.

[15]  S. Obare,et al.  Tuning the reduction of 9,11,20,22-tetraaza-tetrapyridopentacene (TATPP) , 2008 .

[16]  Frédéric Coutrot,et al.  A new pH-switchable dimannosyl[c2]daisy chain molecular machine. , 2008, Organic letters.

[17]  A. I. Oliva,et al.  Energy migration in a self-assembled nonameric porphyrinic molecular box. , 2008, Chemistry.

[18]  J. Sauvage,et al.  A [3]rotaxane with two porphyrinic plates acting as an adaptable receptor. , 2008, Journal of the American Chemical Society.

[19]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[20]  Euan R Kay,et al.  Three state redox-active molecular shuttle that switches in solution and on a surface. , 2008, Journal of the American Chemical Society.

[21]  L. Flamigni Photoinduced processes in interlocked structures containing porphyrins , 2007 .

[22]  J. F. Stoddart,et al.  A redox-driven multicomponent molecular shuttle. , 2007, Journal of the American Chemical Society.

[23]  E. Baranoff,et al.  A liquid-crystalline [2]catenane and its copper(I) complex. , 2007, Angewandte Chemie.

[24]  P. Beer,et al.  Interweaving anion templation. , 2007, Accounts of chemical research.

[25]  I. Willner,et al.  From Molecular Machines to Microscale Motility of Objects: Application as “Smart Materials”, Sensors, and Nanodevices , 2007 .

[26]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[27]  Jean-Pierre Sauvage,et al.  Transition metal complexes as molecular machine prototypes. , 2007, Chemical Society reviews.

[28]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[29]  J. F. Stoddart,et al.  Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. , 2007, Journal of the American Chemical Society.

[30]  A. Talarico,et al.  A versatile bis-porphyrin tweezer host for the assembly of noncovalent photoactive architectures: a photophysical characterization of the tweezers and their association with porphyrins and other guests. , 2006, Chemistry.

[31]  C. Chiorboli,et al.  Primary photoinduced processes in bimetallic dyads with extended aromatic bridges. tetraazatetrapyridopentacene complexes of ruthenium(II) and osmium(II). , 2005, Inorganic chemistry.

[32]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Chih-Ming Ho,et al.  A nanomechanical device based on linear molecular motors , 2004 .

[34]  Francesco Zerbetto,et al.  A generic basis for some simple light-operated mechanical molecular machines. , 2004, Journal of the American Chemical Society.

[35]  A. Talarico,et al.  Photoinduced electron transfer in multiporphyrinic interlocked structures: the effect of copper(I) coordination in the central site. , 2004, Chemistry.

[36]  Jean-Pierre Sauvage,et al.  Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. , 2004, Angewandte Chemie.

[37]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[38]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[39]  Lucia Flamigni,et al.  Photoinduced electron transfer between the interlocked components of porphyrin catenanes: effect of the presence of nonequivalent reduction sites on the charge recombination rate. , 2003, Chemistry.

[40]  Kimoon Kim Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. , 2002, Chemical Society reviews.

[41]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[42]  G. Marconi,et al.  Bis-porphyrinic clamp for photo- and electro-active guests: a spectroscopic and photophysical study , 2001 .

[43]  J. Sauvage,et al.  Multiporphyrinic Rotaxanes: Control of Intramolecular Electron Transfer Rate by Steering the Mutual Arrangement of the Chromophores , 2000 .

[44]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[45]  M. Jiménez,et al.  A Hermaphrodite Molecule: Quantitative Copper(I)‐Directed Formation of a Doubly Threaded Assembly from a Ring Attached to a String , 2000 .

[46]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[47]  F. Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[48]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[49]  V. Balzani,et al.  Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties , 1994 .

[50]  D. McMillin,et al.  Comparative studies of the photophysical properties of copper phenanthrolines: from Cu(dmp)2+ to the copper(I) catenates , 1989 .

[51]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[52]  D. McMillin,et al.  Exciplex quenching of photo-excitd copper complexes , 1985 .

[53]  Alberto Credi,et al.  Molecular Machines and Motors: Recent Advances and Perspectives , 2014 .

[54]  N. Armaroli Photoactive mono- and polynuclear Cu(I)–phenanthrolines. A viable alternative to Ru(II)–polypyridines? , 2001 .

[55]  N. Armaroli,et al.  Photoinduced processes in porphyrin-stoppered [3]-rotaxanes , 1999 .

[56]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[57]  D. McMillin,et al.  Bis(2,9-diphenyl-1,10-phenanthroline)copper(I): a copper complex with a long-lived charge-transfer excited state , 1983 .

[58]  D. McMillin,et al.  Photoluminescence from copper(I) complexes with low-lying metal-to-ligand charge transfer excited states , 1978 .