Improved Isolation of Anti-rhTNF-α scFvs from Phage Display Library by Bioinformatics

[1]  V. Rosato,et al.  Structure and dynamics of the anti-AMCV scFv(F8): effects of selected mutations on the antigen combining site. , 2008, Journal of structural biology.

[2]  R. Hoet,et al.  Screening isolates from antibody phage-display libraries. , 2008, Drug discovery today.

[3]  K. Peter,et al.  Subtractive single-chain antibody (scFv) phage-display: tailoring phage-display for high specificity against function-specific conformations of cell membrane molecules , 2007, Nature Protocols.

[4]  Jian-nan Feng,et al.  A novel human scFv fragment against TNF-α from de novo design method , 2007 .

[5]  C. Bertozzi,et al.  Using Phage Display to Select Antibodies Recognizing Post-translational Modifications Independently of Sequence Context* , 2006, Molecular & Cellular Proteomics.

[6]  Torsten Schwede,et al.  BIOINFORMATICS Bioinformatics Advance Access published November 12, 2005 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling , 2022 .

[7]  Sandor Vajda,et al.  ClusPro: a fully automated algorithm for protein-protein docking , 2004, Nucleic Acids Res..

[8]  L. Moldawer,et al.  Anti-TNF-α therapies: the next generation , 2003, Nature Reviews Drug Discovery.

[9]  Z. Weng,et al.  ZDOCK: An initial‐stage protein‐docking algorithm , 2003, Proteins.

[10]  T. von Rüden,et al.  Antibody discovery: phage display. , 2002, Current opinion in biotechnology.

[11]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[12]  M. Ultsch,et al.  A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. , 2000, Biochemistry.

[13]  R. Roovers,et al.  Model systems to study the parameters determining the success of phage antibody selections on complex antigens. , 1999, Journal of immunological methods.

[14]  George Kollias,et al.  On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease , 1999, Immunological reviews.

[15]  J. Mol,et al.  Selection of high-affinity phage antibodies from phage display libraries , 1999, Nature Biotechnology.

[16]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[17]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[18]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[19]  P. T. Jones,et al.  Isolation of high affinity human antibodies directly from large synthetic repertoires. , 1994, The EMBO journal.

[20]  J. Bye,et al.  Human anti‐self antibodies with high specificity from phage display libraries. , 1993, The EMBO journal.

[21]  J. Thornton,et al.  Stereochemical quality of protein structure coordinates , 1992, Proteins.

[22]  H R Hoogenboom,et al.  By-passing immunization. Human antibodies from V-gene libraries displayed on phage. , 1991, Journal of molecular biology.

[23]  H R Hoogenboom,et al.  Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. , 1991, Nucleic acids research.

[24]  G. Winter,et al.  Phage antibodies: filamentous phage displaying antibody variable domains , 1990, Nature.

[25]  G. P. Smith,et al.  Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. , 1985, Science.

[26]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[27]  Zukang Feng,et al.  The Protein Data Bank and structural genomics , 2003, Nucleic Acids Res..