Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology.

In this study, we demonstrate a polarization sensitive pixel for a complementary metal-oxide-semiconductor (CMOS) image sensor based on 65-nm standard CMOS technology. Using such a deep-submicron CMOS technology, it is possible to design fine metal patterns smaller than the wavelengths of visible light by using a metal wire layer. We designed and fabricated a metal wire grid polarizer on a 20 × 20 μm(2) pixel for image sensor. An extinction ratio of 19.7 dB was observed at a wavelength 750 nm.

[1]  Jun Ohta,et al.  Polarization-Analyzing CMOS Image Sensor With Monolithically Embedded Polarizer for Microchemistry Systems , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[2]  Olivier J. F. Martin,et al.  Polarization sensitive silicon photodiodes using nanostructured metallic grids , 2009 .

[3]  M. Tsuchiya,et al.  Instantaneous Visualization of K-Band Electric Near-Fields by a Live Electrooptic Imaging System Based on Double Sideband Suppressed Carrier Modulation , 2008, Journal of Lightwave Technology.

[4]  Yunkyung Kim,et al.  Measurement and analysis on characteristics of transmission and polarization for 12ML 65nm CMOS , 2010, 2010 IEEE Sensors.

[5]  Viktor Gruev Fabrication of a dual-layer aluminum nanowires polarization filter array , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[6]  Xiaojin Zhao,et al.  Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors , 2009, IEEE Photonics Technology Letters.

[7]  V. Gruev,et al.  CCD polarization imaging sensor with aluminum nanowire optical filters. , 2010, Optics express.

[8]  Jun Ohta,et al.  Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser , 2009 .

[9]  Brian A Wandell,et al.  Integrated color pixels in 0.18-microm complementary metal oxide semiconductor technology. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Viktor Gruev,et al.  Dual-tier thin film polymer polarization imaging sensor. , 2010, Optics express.

[11]  Amine Bermak,et al.  High-resolution thin "guest-host" micropolarizer arrays for visible imaging polarimetry. , 2011, Optics express.

[12]  C. David,et al.  Bilayer Al wire-grids as broadband and high-performance polarizers. , 2006, Optics express.

[13]  Masatsugu Yamashita,et al.  Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique , 2005 .

[14]  K. Sasagawa,et al.  Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields , 2007, IEEE Transactions on Microwave Theory and Techniques.

[15]  Yuuki Watanabe,et al.  Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer. , 2005, Applied optics.

[16]  Sanshiro Shishido,et al.  Polarization Analyzing Image Sensor with On-Chip Metal Wire Grid Polarizer in 65-nm Standard Complementary Metal Oxide Semiconductor Process , 2011 .

[17]  A. Bermak,et al.  Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum. , 2010, Optics express.

[18]  Toshiyasu Tadokoro,et al.  Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements. , 2007, Applied optics.

[19]  M. Akiba,et al.  Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras. , 2003, Optics letters.

[20]  David San Segundo Bello,et al.  Integrated Polarization Analyzing CMOS Image Sensor for Material Classification , 2011, IEEE Sensors Journal.

[21]  Xiang Zhang,et al.  Terahertz imaging via electrooptic effect , 1999 .