The Attractor on Viscosity Peakon b-Family of Equations

We establish the existence of global solution to viscosity peakon b-Family of equations in L 2 un- der the periodical boundary condition and get the existence of the global attractor of semi-group to solution on viscosity peakon b-Family of equations in H 2 .

[1]  Darryl D. Holm,et al.  Wave Structures and Nonlinear Balances in a Family of 1 + 1 Evolutionary PDEs , 2008 .

[2]  Zhaoyang Yin,et al.  On the Cauchy problem for an integrable equation with peakon solutions , 2003 .

[3]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[4]  Giuseppe Maria Coclite,et al.  Numerical schemes for computing discontinuous solutions of the Degasperis–Procesi equation , 2007 .

[5]  Zhaoyang Yin,et al.  Global weak solutions for a new periodic integrable equation with peakon solutions , 2004 .

[6]  E. J. Parkes,et al.  Periodic and solitary-wave solutions of the Degasperis-Procesi equation , 2004 .

[7]  P. Olver,et al.  Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation , 2000 .

[8]  Darryl D. Holm,et al.  An integrable shallow water equation with linear and nonlinear dispersion. , 2001, Physical review letters.

[9]  Darryl D. Holm,et al.  Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves , 2003 .

[10]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[11]  L. Tian,et al.  The Study of Solution of Dissipative Camassa-Holm Equation on Total Space , 2006 .

[12]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[13]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[14]  Adrian Constantin,et al.  A shallow water equation on the circle , 1999 .

[15]  A. Constantin Existence of permanent and breaking waves for a shallow water equation: a geometric approach , 2000 .

[16]  S. Hakkaev,et al.  On the Well-posedness and Stability of Peakons for a Generalized Camassa-Holm Equation , 2006 .

[17]  Darryl D. Holm,et al.  Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary pde , 2002, nlin/0203007.

[18]  Hans Lundmark,et al.  Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation , 2007, J. Nonlinear Sci..

[19]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[20]  Zhaoyang Yin,et al.  Global solutions to a new integrable equation with peakons , 2004 .

[21]  L. Tian,et al.  The bifurcation and peakon for Degasperis–Procesi equation , 2006 .

[22]  L. Tian,et al.  The attractor on viscosity Degasperis–Procesi equation , 2008 .

[23]  Jonatan Lenells,et al.  Traveling wave solutions of the Degasperis-Procesi equation , 2005 .

[24]  L. Tian,et al.  Singular solitons of generalized Camassa-Holm models , 2007 .