Rewriting the bacterial glycocalyx via Suzuki-Miyaura cross-coupling.

Suzuki-Miyaura cross-coupling has been used to couple novel carbohydrate-based boronic acids, site-selectively, to the surface of E. coli at an unnatural amino acid. In this way, benign metal-catalyzed cellular switching allowed modulation of interactions with biomolecular partners via prokaryotic O-glycosylation mimics.

[1]  Peng R. Chen,et al.  Moving Pd‐Mediated Protein Cross Coupling to Living Systems , 2012, Chembiochem : a European journal of chemical biology.

[2]  Christopher D. Spicer,et al.  Palladium-mediated cell-surface labeling. , 2012, Journal of the American Chemical Society.

[3]  Reyna K. V. Lim,et al.  Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells. , 2011, Journal of the American Chemical Society.

[4]  B. G. Davis,et al.  A "tag-and-modify" approach to site-selective protein modification. , 2011, Accounts of chemical research.

[5]  Zhiyong Wang,et al.  The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. , 2011, Molecular bioSystems.

[6]  Christopher D. Spicer,et al.  Palladium-mediated site-selective Suzuki-Miyaura protein modification at genetically encoded aryl halides. , 2011, Chemical Communications.

[7]  Peter G Schultz,et al.  An enhanced system for unnatural amino acid mutagenesis in E. coli. , 2010, Journal of molecular biology.

[8]  B. G. Davis,et al.  A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. , 2009, Journal of the American Chemical Society.

[9]  Barbara Imperiali,et al.  Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. , 2006, Glycobiology.

[10]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[11]  Yanong Wang,et al.  Zr-Mediated hydroboration: stereoselective synthesis of vinyl boronic esters , 2005 .

[12]  C. Szymanski,et al.  Protein glycosylation in bacterial mucosal pathogens , 2005, Nature Reviews Microbiology.

[13]  P. Schultz,et al.  The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination , 2004, Nature Biotechnology.

[14]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[15]  M. Kumar,et al.  Bacterial glycoproteins: Functions, biosynthesis and applications , 2003, Proteomics.

[16]  Simon J North,et al.  N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. , 2002, Science.

[17]  C. Szymanski,et al.  Structure of the N-Linked Glycan Present on Multiple Glycoproteins in the Gram-negative Bacterium, Campylobacter jejuni * , 2002, The Journal of Biological Chemistry.

[18]  Benjamin G Davis,et al.  Synthesis of glycoproteins. , 2002, Chemical reviews.

[19]  H. Mereyala,et al.  A highly diastereoselective, practical synthesis of allyl, propargyl 2,3,4,6-tetra-O-acetyl-β-d-gluco, β-d-galactopyranosides and allyl, propargyl heptaacetyl-β-d-lactosides , 1998 .

[20]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[21]  N. Miyaura,et al.  Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters , 1995 .

[22]  L. Tabak,et al.  A Comparison of Serine and Threonine O-Glycosylation by UDP-GaINAc:Polypeptide N-Acetylgalactosaminyltransferase , 1993, Journal of dental research.

[23]  E. Negishi,et al.  Vinylic organoboranes. 6. A general synthesis of (E)-disubstituted-alkenes or ketones via the (E)-(1-substituted-1-alkenyl)boronic esters , 1986 .

[24]  I. Rodriguez,et al.  A novel glycosyl-amino acid linkage: rabbit-muscle glycogen is covalently linked to a protein via tyrosine. , 1985, Biochemical and biophysical research communications.

[25]  A. Strosberg,et al.  The structure of the lentil (Lens culinaris) lectin. Amino acid sequence determination and prediction of the secondary structure. , 1981, The Journal of biological chemistry.

[26]  H. Brown,et al.  Hydroboration. 55. Hydroboration of alkynes with dibromoborane-dimethyl sulfide. Convenient preparation of alkenyldibromoboranes , 1980 .

[27]  L. A. Murphy,et al.  Five alpha-D-galactopyranosyl-binding isolectins from Bandeiraea simplicifolia seeds. , 1977, The Journal of biological chemistry.

[28]  H. Brown,et al.  Hydroboration. 45. New, convenient preparations of representative borane reagents utilizing borane-methyl sulfide , 1977 .

[29]  J. Strominger,et al.  Protein and Carbohydrate Composition of the Cell Envelope of Halobacterium salinarium , 1974, Journal of bacteriology.

[30]  S. Gupta,et al.  Catecholborane (1,3,2-benzodioxaorole) as a new, general monohydroboration reagent for alkynes. Convenient synthesis of alkeneboronic esters and acids from alkynes via hydroboration , 1972 .

[31]  B. G. Davis,et al.  Glycoprotein synthesis: an update. , 2009, Chemical reviews.

[32]  M. Vaultier,et al.  Vinylboronates ß-substituted by an electron withdrawing group : synthesis and Diels-Alder reactivity of a new type of electron deficient olefins , 1989 .

[33]  T. Pistole Interaction of bacteria and fungi with lectins and lectin-like substances. , 1981, Annual review of microbiology.

[34]  C. BrownH,et al.  ヒドロほう素化 LV ジブロモボラン-ジメチルスルフィドによるアルキンのヒドロほう素化 アルケニルジブロモボランの簡便合成 , 1980 .