No evidence for an attentional bias towards implicit temporal regularities

[1]  A. Clark A nice surprise? Predictive processing and the active pursuit of novelty , 2018 .

[2]  Anna C. Nobre,et al.  Anticipated moments: temporal structure in attention , 2017, Nature Reviews Neuroscience.

[3]  H. Rijn,et al.  Pupillary response indexes the metrical hierarchy of unattended rhythmic violations , 2017, Brain and Cognition.

[4]  B. Hayden,et al.  The Psychology and Neuroscience of Curiosity , 2015, Neuron.

[5]  Jeffrey N. Rouder,et al.  Computation of Bayes Factors for Common Designs , 2015 .

[6]  Ru Qi Yu,et al.  The persistence of the attentional bias to regularities in a changing environment , 2015, Attention, perception & psychophysics.

[7]  Sander Martens,et al.  Training-induced Changes in the Dynamics of Attention as Reflected in Pupil Dilation , 2015, Journal of Cognitive Neuroscience.

[8]  D. Berlyne Conflict, arousal, and curiosity , 2014 .

[9]  Richard N Aslin,et al.  The Goldilocks effect in infant auditory attention. , 2014, Child development.

[10]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[11]  Jennifer T. Coull,et al.  Metrical Rhythm Implicitly Orients Attention in Time as Indexed by Improved Target Detection and Left Inferior Parietal Activation , 2014, Journal of Cognitive Neuroscience.

[12]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[13]  Daniel Ying-Jeh Little,et al.  Maximal mutual information, not minimal entropy, for escaping the "Dark Room". , 2013, The Behavioral and brain sciences.

[14]  N. Turk-Browne,et al.  Attention Is Spontaneously Biased Toward Regularities , 2013, Psychological science.

[15]  J. Obleser,et al.  Frequency modulation entrains slow neural oscillations and optimizes human listening behavior , 2012, Proceedings of the National Academy of Sciences.

[16]  Virginie van Wassenhove,et al.  Temporal Structure in Audiovisual Sensory Selection , 2012, PloS one.

[17]  Richard N. Aslin,et al.  The Goldilocks Effect: Human Infants Allocate Attention to Visual Sequences That Are Neither Too Simple Nor Too Complex , 2012, PloS one.

[18]  Diane M. Beck,et al.  Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment , 2010, Cognition.

[19]  Marvin M. Chun,et al.  Neural Evidence of Statistical Learning: Efficient Detection of Visual Regularities Without Awareness , 2009, Journal of Cognitive Neuroscience.

[20]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[21]  George A. Alvarez,et al.  Overwriting and rebinding: Why feature-switch detection tasks underestimate the binding capacity of visual working memory , 2009 .

[22]  Marvin M. Chun,et al.  Babies and Brains: Habituation in Infant Cognition and Functional Neuroimaging , 2008, Frontiers in human neuroscience.

[23]  Richard D. Morey,et al.  Confidence Intervals from Normalized Data: A correction to Cousineau (2005) , 2008 .

[24]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[25]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[26]  B. Scholl,et al.  The Automaticity of Visual Statistical Learning Statistical Learning , 2005 .

[27]  J. Lupiáñez,et al.  Attentional preparation based on temporal expectancy modulates processing at the perceptual level , 2005, Psychonomic bulletin & review.

[28]  S. Martens,et al.  Timing attention: Cuing target onset interval attenuates the attentional blink , 2005, Memory & cognition.

[29]  G. Recanzone Auditory influences on visual temporal rate perception. , 2003, Journal of neurophysiology.

[30]  Bruno H. Repp,et al.  Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. , 2002, Journal of experimental psychology. Human perception and performance.

[31]  Aniruddh D. Patel,et al.  Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions. , 2002, Human movement science.

[32]  M. Jones,et al.  Temporal Aspects of Stimulus-Driven Attending in Dynamic Arrays , 2002, Psychological science.

[33]  G. Woodman,et al.  Voluntary and automatic attentional control of visual working memory , 2002 .

[34]  Edward W. Large,et al.  Perceiving temporal regularity in music , 2002, Cogn. Sci..

[35]  R. Aslin,et al.  PSYCHOLOGICAL SCIENCE Research Article UNSUPERVISED STATISTICAL LEARNING OF HIGHER-ORDER SPATIAL STRUCTURES FROM VISUAL SCENES , 2022 .

[36]  M. Chun,et al.  Temporal contextual cuing of visual attention. , 2001, Journal of experimental psychology. Learning, memory, and cognition.

[37]  E. Large,et al.  The dynamics of attending: How people track time-varying events. , 1999 .

[38]  M. Chun,et al.  Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention , 1998, Cognitive Psychology.

[39]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[40]  R N Aslin,et al.  Statistical Learning by 8-Month-Old Infants , 1996, Science.

[41]  P A Kolers,et al.  Rhythms and responses. , 1985, Journal of experimental psychology. Human perception and performance.

[42]  S. Yantis,et al.  Abrupt visual onsets and selective attention: evidence from visual search. , 1984, Journal of experimental psychology. Human perception and performance.

[43]  I. Biederman,et al.  Scene perception: Detecting and judging objects undergoing relational violations , 1982, Cognitive Psychology.

[44]  D J Povel,et al.  Internal representation of simple temporal patterns. , 1981, Journal of experimental psychology. Human perception and performance.

[45]  R. Näätänen,et al.  Foreperiod and simple reaction time. , 1981 .

[46]  A. Reber Implicit learning of artificial grammars , 1967 .

[47]  W. N. Dember,et al.  Analysis of exploratory, manipulatory, and curiosity behaviors. , 1957, Psychological review.