Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics

Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations.This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading.To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated.

[1]  Robert L. Mullen,et al.  Structural Analysis with Fuzzy-Based Load Uncertainty , 1996 .

[2]  Su-huan Chen,et al.  Interval static displacement analysis for structures with interval parameters , 2002 .

[3]  Richard H. Gallagher,et al.  Finite Element Analysis: Fundamentals , 1975 .

[4]  Willard L. Miranker,et al.  A new approach to scientific computation , 1983 .

[5]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[6]  Siegfried M. Rump,et al.  Solving Algebraic Problems with High Accuracy , 1983, IMACS World Congress.

[7]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[8]  J. Rohn,et al.  Linear Interval Equations: Computing Sufficiently Accurate Enclosures is NP-Hard∗ , 2005 .

[9]  Christian Jansson,et al.  Interval linear systems with symmetric matrices, skew-symmetric matrices and dependencies in the right hand side , 1991, Computing.

[10]  Søren Nielsen,et al.  Closure of "Interval Algebra to Deal with Pattern Loading and Structural Uncertainties" , 1995 .

[11]  Robert L. Mullen,et al.  Bounds of Structural Response for All Possible Loading Combinations , 1999 .

[12]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[13]  E. Hansen,et al.  Interval Arithmetic in Matrix Computations, Part II , 1965 .

[14]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[15]  Otto Mayer,et al.  Algebraische und metrische Strukturen in der Intervallrechnung und einige Anwendungen , 1970, Computing.

[16]  A. Neumaier Rigorous sensitivity analysis for parameter-dependent systems of equations , 1989 .

[17]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[19]  Ulrich W. Kulisch,et al.  Grundzüge einer Intervallrechnung für Matrizen und einige Anwendungen / Principles of an interval calculus for matrices and some applications , 1968, Elektron. Rechenanlagen.

[20]  K. Bathe Finite Element Procedures , 1995 .

[21]  Siegfried M. Rump,et al.  Self-validating methods , 2001 .

[22]  A. Neumaier Overestimation in linear interval equations , 1987 .

[23]  Hao Zhang,et al.  Nondeterministic Linear Static Finite Element Analysis: An Interval Approach , 2005 .

[24]  S. Mcwilliam Anti-optimisation of uncertain structures using interval analysis , 2001 .

[25]  R. Mullen,et al.  Uncertainty in mechanics problems-interval-based approach , 2001 .

[26]  Stephen G. Buonopane,et al.  Reliability considerations for steel frames designed with advanced analysis , 2003 .

[27]  Singiresu S. Rao,et al.  Analysis of uncertain structural systems using interval analysis , 1997 .

[28]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[29]  Chris P. Pantelides,et al.  Load and resistance convex models for optimum design , 1999 .

[30]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[31]  David M. GAYt SOLVING INTERVAL LINEAR EQUATIONS , 1982 .

[32]  F. Thouverez,et al.  ANALYSIS OF MECHANICAL SYSTEMS USING INTERVAL COMPUTATIONS APPLIED TO FINITE ELEMENT METHODS , 2001 .

[33]  A. Neumaier Interval methods for systems of equations , 1990 .

[34]  Da Ruan,et al.  Foundations and Applications of Possibility Theory , 1995 .

[35]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[36]  Weldon A. Lodwick,et al.  Special issue: interfaces between fuzzy set theory and interval analysis , 2003, Fuzzy Sets Syst..

[37]  W. Graf,et al.  Fuzzy structural analysis using α-level optimization , 2000 .

[38]  Siegfried M. Rump,et al.  On the solution of interval linear systems , 1991, Computing.

[39]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[40]  Unyime O. Akpan,et al.  Practical fuzzy finite element analysis of structures , 2001 .

[41]  Robert L. Mullen,et al.  Formulation of Fuzzy Finite‐Element Methods for Solid Mechanics Problems , 1999 .

[42]  Kari Sentz,et al.  Combination of Evidence in Dempster-Shafer Theory , 2002 .

[43]  Singiresu S Rao,et al.  Numerical solution of fuzzy linear equations in engineering analysis , 1998 .

[44]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[45]  Robert L. Mullen,et al.  Development of interval based methods for fuzziness in continuum-mechanics , 1995, Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society.

[46]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[47]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[48]  Chris P. Pantelides,et al.  COMPARISON OF FUZZY SET AND CONVEX MODEL THEORIES IN STRUCTURAL DESIGN , 2001 .