A 3.5–6.8-GHz Wide-Bandwidth DTC-Assisted Fractional-N All-Digital PLL With a MASH $\Delta \Sigma $ -TDC for Low In-Band Phase Noise

This paper proposes a digital-to-time converter (DTC)-assisted fractional-N wide-bandwidth all-digital phase-locked loop (ADPLL) with a fine-resolution time-to-digital converter (TDC). The TDC employs a two-channel time-interleaved time-domain register with an implicit adder/subtractor realizing an error-feedback topology. Such an error-feedback unit of a first-order <inline-formula> <tex-math notation="LaTeX">$\Delta \Sigma $ </tex-math></inline-formula>-TDC can be cascaded as a multi-stage noise shaping configuration to achieve higher-order noise-shaping and, thereby, low in-band phase noise (PN) of the ADPLL. A digitally controlled oscillator with a transformer and a pair of cross-coupled NMOS amplifiers exploits magnetic and capacitive coupling to achieve nearly an octave frequency coverage, i.e., 1.73–3.38 GHz (after a <inline-formula> <tex-math notation="LaTeX">$\div $ </tex-math></inline-formula>2 division). Fabricated in 40-nm CMOS, the ADPLL achieves better than −110-dBc/Hz in-band PN and occupies an active area of 0.5 mm<sup>2</sup>. With a 50-MHz reference clock, a 2-GHz output RF clock, and a loop bandwidth of 800 kHz, this prototype achieves 420-fs<inline-formula> <tex-math notation="LaTeX">$_{{\mathrm{rms}}}$ </tex-math></inline-formula> jitter, integrated from 1-kHz to 30-MHz offset, while drawing 10.7 mW.

[1]  Ahmed Elkholy,et al.  A 3.7 mW Low-Noise Wide-Bandwidth 4.5 GHz Digital Fractional-N PLL Using Time Amplifier-Based TDC , 2015, IEEE Journal of Solid-State Circuits.

[2]  Kenichi Okada,et al.  14.1 A 0.048mm2 3mW synthesizable fractional-N PLL with a soft injection-locking technique , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[3]  Lars C. Jansson,et al.  A wideband 2.4-GHz delta-sigma fractional-NPLL with 1-Mb/s in-loop modulation , 2004, IEEE Journal of Solid-State Circuits.

[4]  Howard C. Luong,et al.  Analysis and Design of Transformer-Based Dual-Band VCO for Software-Defined Radios , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Jri Lee,et al.  Study of Subharmonically Injection-Locked PLLs , 2009, IEEE Journal of Solid-State Circuits.

[6]  Jan Craninckx,et al.  A 9.2–12.7 GHz Wideband Fractional-N Subsampling PLL in 28 nm CMOS With 280 fs RMS Jitter , 2015, IEEE Journal of Solid-State Circuits.

[7]  Giovanni Marucci,et al.  A 1.7 GHz Fractional-N Frequency Synthesizer Based on a Multiplying Delay-Locked Loop , 2015, IEEE Journal of Solid-State Circuits.

[8]  Giovanni Marzin,et al.  A 2.9-to-4.0GHz fractional-N digital PLL with bang-bang phase detector and 560fsrms integrated jitter at 4.5mW power , 2011, 2011 IEEE International Solid-State Circuits Conference.

[9]  A. Bevilacqua,et al.  A 3.4-7 GHz Transformer-Based Dual-mode Wideband VCO , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[10]  R.B. Staszewski,et al.  All-digital phase-domain TX frequency synthesizer for Bluetooth radios in 0.13/spl mu/m CMOS , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[11]  Amr Elshazly,et al.  A 13b 315fsrms 2mW 500MS/s 1MHz bandwidth highly digital time-to-digital converter using switched ring oscillators , 2012, 2012 IEEE International Solid-State Circuits Conference.

[12]  Li Lin,et al.  9.4 A 28nm CMOS digital fractional-N PLL with −245.5dB FOM and a frequency tripler for 802.11abgn/ac radio , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[13]  Shen-Iuan Liu,et al.  A Digital Calibration Technique for Charge Pumps in Phase-Locked Systems , 2008, IEEE Journal of Solid-State Circuits.

[14]  Jan Craninckx,et al.  9.7 a self-calibrated 10mb/s phase modulator with -37.4db evm based on a 10.1-to-12.4ghz, -246.6db-fom, fractional-n subsampling pll , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[15]  Yen-Hsiang Wang,et al.  14.9 Sub-sampling all-digital fractional-N frequency synthesizer with −111dBc/Hz in-band phase noise and an FOM of −242dB , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[16]  Pietro Andreani,et al.  A TX VCO for WCDMA/EDGE in 90 nm RF CMOS , 2011, IEEE Journal of Solid-State Circuits.

[17]  Robert B. Staszewski,et al.  A low-power all-digital PLL architecture based on phase prediction , 2012, 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012).

[18]  Michael H. Perrott,et al.  A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation , 1997, IEEE J. Solid State Circuits.

[19]  Kenichi Okada,et al.  A 2.2 GHz -242 dB-FOM 4.2 mW ADC-PLL Using Digital Sub-Sampling Architecture , 2016, IEEE Journal of Solid-State Circuits.

[20]  Jae-Yoon Sim,et al.  A 2 GHz fractional-N digital PLL with 1b noise shaping ΔΣ TDC , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[21]  Kenichi Okada,et al.  A Fractional-N Sub-Sampling PLL using a Pipelined Phase-Interpolator With an FoM of -250 dB , 2016, IEEE Journal of Solid-State Circuits.

[22]  Robert B. Staszewski,et al.  Gain Estimation of a Digital-to-Time Converter for Phase-Prediction All-Digital PLL , 2013, 2013 European Conference on Circuit Theory and Design (ECCTD).

[23]  Robert B. Staszewski,et al.  An Amplitude Resolution Improvement of an RF-DAC Employing Pulsewidth Modulation , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Kenichi Okada,et al.  A 3.6 GHz Low-Noise Fractional-N Digital PLL Using SAR-ADC-Based TDC , 2016, IEEE Journal of Solid-State Circuits.

[25]  Matthew Z. Straayer,et al.  A Low-Noise Wide-BW 3.6-GHz Digital $\Delta\Sigma$ Fractional-N Frequency Synthesizer With a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation , 2008, IEEE Journal of Solid-State Circuits.

[26]  M.Z. Straayer,et al.  A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping , 2009, IEEE Journal of Solid-State Circuits.

[27]  Fu-Lung Hsueh,et al.  A Fully Integrated Bluetooth Low-Energy Transmitter in 28 nm CMOS With 36% System Efficiency at 3 dBm , 2016, IEEE Journal of Solid-State Circuits.

[28]  Enrico Temporiti,et al.  A 3.5 GHz Wideband ADPLL With Fractional Spur Suppression Through TDC Dithering and Feedforward Compensation , 2010, IEEE Journal of Solid-State Circuits.

[29]  Pietro Andreani,et al.  A 3.6 mW, 90 nm CMOS Gated-Vernier Time-to-Digital Converter With an Equivalent Resolution of 3.2 ps , 2012, IEEE Journal of Solid-State Circuits.

[30]  Nicola Da Dalt A design-oriented study of the nonlinear dynamics of digital bang-bang PLLs , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[31]  David A. Johns,et al.  Time-interleaved oversampling A/D converters: theory and practice , 1997 .

[32]  Po-Chun Huang,et al.  A Fractional-N Divider-Less Phase-Locked Loop With a Subsampling Phase Detector , 2014, IEEE Journal of Solid-State Circuits.

[33]  Azita Emami-Neyestanak,et al.  An 8 GHz First-Order Frequency Synthesizer for Low-Power On-Chip Clock Generation , 2015, IEEE Journal of Solid-State Circuits.

[34]  Kathleen Philips,et al.  9.8 An 860μW 2.1-to-2.7GHz all-digital PLL-based frequency modulator with a DTC-assisted snapshot TDC for WPAN (Bluetooth Smart and ZigBee) applications , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[35]  Yue Chen,et al.  A 3.5–6.8GHz wide-bandwidth DTC-assisted fractional-N all-digital PLL with a MASH ΔΣ TDC for low in-band phase noise , 2016, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference.

[36]  Ian Galton,et al.  A Wide-Bandwidth 2.4 GHz ISM Band Fractional-$N$ PLL With Adaptive Phase Noise Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[37]  T. Cho,et al.  A low spur fractional-N digital PLL for 802.11 a/b/g/n/ac with 0.19 psrms jitter , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[38]  Shen-Iuan Liu,et al.  A 2.4-GHz Subharmonically Injection-Locked PLL With Self-Calibrated Injection Timing , 2012, IEEE Journal of Solid-State Circuits.

[39]  Anthony Chan Carusone,et al.  A Digital Phase-Locked Loop With Calibrated Coarse and Stochastic Fine TDC , 2012, IEEE Journal of Solid-State Circuits.

[40]  Paul Leroux,et al.  A 1.7mW 11b 1-1-1 MASH Delta-Sigma Time-to-Digital Converter , 2011, ISSCC 2011.

[41]  Matthew Z. Straayer,et al.  A Low-Noise, Wide-BW 3.6GHz Digital ΔΣ Fractional-N Frequency Synthesizer with a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[42]  B. Nauta,et al.  A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by $N ^{2}$ , 2009, IEEE Journal of Solid-State Circuits.

[43]  Dmytro Cherniak,et al.  digPLL-Lite: A Low-Complexity, Low-Jitter Fractional-N Digital PLL Architecture , 2013, IEEE Journal of Solid-State Circuits.

[44]  Ehsan Afshari,et al.  A Low-Phase-Noise Wide-Tuning-Range Oscillator Based on Resonant Mode Switching , 2012, IEEE Journal of Solid-State Circuits.

[45]  Ahmed Elkholy,et al.  Design and Analysis of Low-Power High-Frequency Robust Sub-Harmonic Injection-Locked Clock Multipliers , 2015, IEEE Journal of Solid-State Circuits.

[46]  Robert B. Staszewski,et al.  Spurious free time-to-digital conversion in an ADPLL using short dithering sequences , 2010, IEEE Custom Integrated Circuits Conference 2010.

[47]  Andrea Bevilacqua,et al.  On the Phase Noise Performance of Transformer-Based CMOS Differential-Pair Harmonic Oscillators , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[48]  A.A. Abidi,et al.  A Low-Noise Wideband Digital Phase-Locked Loop Based on a Coarse–Fine Time-to-Digital Converter With Subpicosecond Resolution , 2009, IEEE Journal of Solid-State Circuits.

[49]  Taeik Kim,et al.  A 0.004mm2 250μW ΔΣ TDC with time-difference accumulator and a 0.012mm2 2.5mW bang-bang digital PLL using PRNG for low-power SoC applications , 2012, 2012 IEEE International Solid-State Circuits Conference.

[50]  Robert Bogdan Staszewski,et al.  A 103fsrms 1.32mW 50MS/s 1.25MHz bandwidth two-step flash-ΔΣ time-to-digital converter for ADPLL , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).