Clustering Spatial Data in The Presence of Obstacles

Dealing with constraints due to obstacles is an important topic in constraint-based spatial clustering. In this paper, we proposed the DBRS_O method to identify clusters in the presence of intersected obstacles. Without doing any preprocessing, DBRS_O processes the constraints during clustering. DBRS_O can also avoid unnecessary computations when obstacles do not affect the clustering result. As well, DBRS_O can find clusters with arbitrary shapes, varying densities, deal with significant non-spatial attributes and handle large datasets.

[1]  Laks V. S. Lakshmanan,et al.  Constraint-Based Multidimensional Data Mining , 1999, Computer.

[2]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[3]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[4]  Howard J. Hamilton,et al.  DBRS: A Density-Based Spatial Clustering Method with Random Sampling , 2003, PAKDD.

[5]  James Arvo,et al.  Graphics Gems II , 1994 .

[6]  Chi-Hoon Lee,et al.  Clustering spatial data when facing physical constraints , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[7]  Ickjai Lee,et al.  AUTOCLUST+: Automatic Clustering of Point-Data Sets in the Presence of Obstacles , 2000, TSDM.

[8]  Anthony K. H. Tung,et al.  Constraint-based clustering in large databases , 2001, ICDT.

[9]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[10]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[11]  Anthony K. H. Tung,et al.  Spatial clustering in the presence of obstacles , 2001, Proceedings 17th International Conference on Data Engineering.

[12]  Chi-Hoon. Lee Density-based clustering of spatial data in the presence of physical constraints , 2002 .

[13]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[14]  Max J. Egenhofer,et al.  A Formal Definition of Binary Topological Relationships , 1989, FODO.

[15]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[16]  Ickjai Lee,et al.  AUTOCLUST: Automatic Clustering via Boundary Extraction for Mining Massive Point-Data Sets , 2000 .