Optimal excitation conditions for indistinguishable photons from quantum dots

In this paper, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong–Ou–Mandel interference of consecutive photons from the spontaneous emission of an InAs quantum dot state under various excitation schemes and different excitation conditions and give a comparison.

[1]  G. Weihs,et al.  Quantum non-Gaussian Depth of Single-Photon States. , 2014, Physical review letters.

[2]  K. Jöns,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, Nature Photonics.

[3]  Gregor Weihs,et al.  Time-bin entangled photons from a quantum dot , 2008, Nature Communications.

[4]  I. Sagnes,et al.  Bright solid-state sources of indistinguishable single photons , 2013, Nature Communications.

[5]  N. Godbout,et al.  Entanglement-enhanced probing of a delicate material system , 2012, Nature Photonics.

[6]  G. Weihs,et al.  Deterministic photon pairs and coherent optical control of a single quantum dot. , 2012, Physical review letters.

[7]  Jian-Wei Pan,et al.  On-demand semiconductor single-photon source with near-unity indistinguishability. , 2012, Nature nanotechnology.

[8]  Angelo Gulinatti,et al.  Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation , 2012, Scientific Reports.

[9]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[10]  G. Solomon,et al.  Dynamics of nonclassical light from a single solid-state quantum emitter. , 2012, Physical review letters.

[11]  A J Shields,et al.  Indistinguishable entangled photons generated by a light-emitting diode. , 2012, Physical review letters.

[12]  G. Solomon,et al.  Coalescence of single photons emitted by disparate single-photon sources: the example of InAs quantum dots and parametric down-conversion sources. , 2011, Physical review letters.

[13]  Andreas Muller,et al.  Interference of single photons from two separate semiconductor quantum dots , 2011, OPTO.

[14]  Ian Farrer,et al.  Two-photon interference of the emission from electrically tunable remote quantum dots , 2010 .

[15]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[16]  G. Solomon,et al.  Interference of single photons from two separate semiconductor quantum dots. , 2010, Physical review letters.

[17]  D. Ritchie,et al.  Two-photon interference of the emission from electrically tunable remote quantum dots , 2009, 0911.3997.

[18]  D. A. Ritchie,et al.  Interference of dissimilar photon sources , 2009, 1006.0820.

[19]  G. Rempe,et al.  Phase shaping of single-photon wave packets , 2009 .

[20]  S. Reitzenstein,et al.  Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. , 2009, Physical review letters.

[21]  Shengwang Du,et al.  Electro-optic modulation of single photons. , 2008, Physical review letters.

[22]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[23]  D. Ritchie,et al.  Indistinguishable photons from a diode , 2008, 0803.3700.

[24]  D. Deppe,et al.  Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. , 2007, Physical review letters.

[25]  D. Ritchie,et al.  A semiconductor source of triggered entangled photon pairs , 2006, Nature.

[26]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical review letters.

[27]  I. Sagnes,et al.  Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity , 2005 .

[28]  D. Ritchie,et al.  Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source. , 2005, Optics express.

[29]  C. Bräuchle,et al.  Indistinguishable photons from a single molecule. , 2005, Physical review letters.

[30]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[31]  Charles Santori,et al.  Single-photon generation with InAs quantum dots , 2004 .

[32]  Thomas Legero,et al.  Quantum beat of two single photons. , 2004, Physical review letters.

[33]  T. Wilk,et al.  Time-resolved two-photon quantum interference , 2003, quant-ph/0308024.

[34]  Jelena Vuckovic,et al.  Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot , 2003 .

[35]  I. Robert-Philip,et al.  Interference and correlation of two independent photons , 2003 .

[36]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[37]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[38]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[39]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[40]  W. E. Moerner,et al.  Photon antibunching in single CdSe/ZnS quantum dot fluorescence , 2000 .

[41]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[42]  Charles H. Bennett,et al.  Quantum information and computation , 1995, Nature.

[43]  Nikolai N. Ledentsov,et al.  Energy relaxation by multiphonon processes in InAs/GaAs quantum dots , 1997 .

[44]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.