X-ray spectroscopic verification of the active species in iron-catalyzed cross-coupling reactions.

[1]  B. Bogdanovic,et al.  Transition Metal Catalyzed Preparation of Grignard Compounds , 2000 .

[2]  W. Seidel,et al.  Zur Chemie des Dimesityleisens: VI. Die struktur von tetramesityldieisen , 1993 .

[3]  A. Jentys,et al.  Estimation of mean size and shape of small metal particles by EXAFS , 1999 .

[4]  H. Bertagnolli,et al.  Röntgenabsorptionsspektroskopie an amorphen Festkörpern, Flüssigkeiten, katalytischen und biochemischen Systemen — Möglichkeiten und Grenzen , 1994 .

[5]  J. Harvey,et al.  Simplifying iron-phosphine catalysts for cross-coupling reactions. , 2013, Angewandte Chemie.

[6]  A. Fürstner,et al.  Preparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactions. , 2008, Journal of the American Chemical Society.

[7]  P. Petit,et al.  Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .

[8]  B. Scheiper,et al.  Selective iron-catalyzed cross-coupling reactions of grignard reagents with enol triflates, acid chlorides, and dichloroarenes. , 2004, The Journal of organic chemistry.

[9]  J. Kochi,et al.  Vinylation of Grignard reagents. Catalysis by iron , 1971 .

[10]  M. Bauer,et al.  Structural investigation of high-valent manganese-salen complexes by UV/Vis, Raman, XANES, and EXAFS spectroscopy. , 2003, Chemistry.

[11]  N. Miyaura Cross-Coupling Reactions , 2002 .

[12]  P. Power,et al.  Three-coordinate iron complexes: x-ray structural characterization of the iron amide-bridged dimers [Fe(NR2)2]2 (R = SiMe3, C6H5) and the adduct Fe[N(SiMe3)2]2(THF) and determination of the association energy of the monomer Fe{N(SiMe3)2}2 in solution , 1991 .

[13]  B. Neumann,et al.  Die katalytische Oxydation des Ammoniaks zu Salpetersäure , 1920 .

[14]  A. Fürstner,et al.  Advances in Iron Catalyzed Cross Coupling Reactions , 2005 .

[15]  J. Fettinger,et al.  Univalent transition metal complexes of arenes stabilized by a bulky terphenyl ligand: differences in the stability of Cr(I), Mn(I) or Fe(I) complexes. , 2008, Chemical communications.

[16]  Qiang Zhang,et al.  Dinuclear Iron Complex-Catalyzed Cross-Coupling of Primary Alkyl Fluorides with Aryl Grignard Reagents , 2012 .

[17]  Matthias Bauer,et al.  X-Ray absorption in homogeneous catalysis research: the iron-catalyzed Michael addition reaction by XAS, RIXS and multi-dimensional spectroscopy. , 2010, Physical chemistry chemical physics : PCCP.

[18]  K. Wieghardt,et al.  [{Fe(tim)}2]: an Fe-Fe dimer containing an unsupported metal-metal bond and redox-active N4 macrocyclic ligands. , 2009, Angewandte Chemie.

[19]  C. Rizzoli,et al.  Magnetic Properties Diagnostic for the Existence of Iron(II)-Iron(II) Bonds in Dinuclear Complexes Which Derive from Stepwise Insertion Reactions on Unsupported Iron-Aryl Bonds , 1994 .

[20]  Deborah J. Jones,et al.  [Ti(MgCl)2· xTHF]q: a reagent for the McMurry reaction and a novel inorganic Grignard complex , 1993 .

[21]  A. Fürstner,et al.  Iron-catalyzed cross-coupling reactions. A scalable synthesis of the immunosuppressive agent FTY720. , 2004, The Journal of organic chemistry.

[22]  E. Nakamura,et al.  Low-valent iron-catalyzed C-C bond formation-addition, substitution, and C-H bond activation. , 2010, The Journal of organic chemistry.

[23]  K. Wieghardt,et al.  [{Fe(tim)}2]: ein Fe‐Fe‐Dimer mit einer unverbrückten Metall‐Metall‐Bindung und redoxaktiven N4‐makrocyclischen Liganden , 2009 .

[24]  M. Strlič,et al.  XANES analysis of Fe valence in iron gall inks , 2007 .

[25]  J. Iball,et al.  A refinement of the crystal structure of ferric acetylacetonate , 1967 .

[26]  A. Leitner,et al.  Eisenkatalysierte Kreuzkupplungen von Alkyl‐Grignard‐Verbindungen mit Arylchloriden, ‐tosylaten und ‐triflaten , 2002 .

[27]  H. Bertagnolli,et al.  EXAFS investigation of metal organic synthesis tools , 2002 .

[28]  G. King Organometallic complexes. VII. The structure of the iron carbonyl phenylacetylene complex Fe2(CO)6(C6H5C2H)3 , 1962 .

[29]  R. Nuzzo,et al.  A view from the inside: Complexity in the atomic scale ordering of supported metal nanoparticles , 2001 .

[30]  P. Knochel,et al.  Iron-catalyzed cross-coupling of N-heterocyclic chlorides and bromides with arylmagnesium reagents. , 2012, Organic letters.

[31]  Density functional theory study of the mechanisms of iron-catalyzed cross-coupling reactions of alkyl grignard reagents. , 2013, The journal of physical chemistry. A.

[32]  Anna Hedström,et al.  Mechanistic Investigation of Iron‐Catalyzed Coupling Reactions , 2009 .

[33]  M. Bauer,et al.  The structures of the precursor Hf(OnBu)4 and its modification in solution: EXAFS-investigation in combination with XANES- and IR-spectroscopy , 2007 .

[34]  T. Hatakeyama,et al.  Effect of TMEDA on iron-catalyzed coupling reactions of ArMgX with alkyl halides. , 2009, Journal of the American Chemical Society.

[35]  A. Beale,et al.  EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. , 2010, Physical chemistry chemical physics : PCCP.

[36]  M. Botta,et al.  Iron-Catalyzed Cross-Coupling between 1-Bromoalkynes and Grignard-Derived Organocuprate Reagents , 2010 .

[37]  M. Bauer,et al.  Iron(0) Particles: Catalytic Hydrogenations and Spectroscopic Studies , 2012 .

[38]  L. Zani,et al.  Iron-catalyzed reactions in organic synthesis. , 2004, Chemical reviews.

[39]  J. Harvey,et al.  Iron(I) in Negishi cross-coupling reactions. , 2012, Journal of the American Chemical Society.

[40]  J. Cvengroš,et al.  Coming of age: sustainable iron-catalyzed cross-coupling reactions. , 2009, ChemSusChem.

[41]  J. Fettinger,et al.  Synthesis and characterization of the metal(I) dimers [Ar'MMAr']: comparisons with quintuple-bonded [Ar'CrCrAr']. , 2008, Angewandte Chemie.

[42]  A. Fürstner,et al.  Iron-Catalyzed Cross-Coupling Reactions of Alkyl-Grignard Reagents with Aryl Chlorides, Tosylates, and Triflates , 2002 .

[43]  K. Jonas,et al.  Einfacher Zugang zu Li‐ oder Zn‐metallierten η5‐Cyclopentadienyleisen‐Olefin‐Komplexen , 1979 .

[44]  A. Muñoz-Martín,et al.  Microstructural properties and local order around iron in granular metal–insulator Fe/Si3N4 systems prepared by magnetron sputtering , 2008 .

[45]  John J. Rehr,et al.  Limits and Advantages of X-ray Absorption Near Edge Structure for Nanometer Scale Metallic Clusters , 2003 .

[46]  F. Cotton,et al.  Highly distorted diiron(II, II) complexes containing four amidinate ligands. A long and short metal-metal distance , 1997 .

[47]  C. Krüger,et al.  Tetrakis(ethylene)irondilithium and Bis(η4‐1,5‐cy‐clooctadiene)irondilithium , 1979 .

[48]  Alois Fürstner,et al.  The promise and challenge of iron-catalyzed cross coupling. , 2008, Accounts of chemical research.

[49]  B. Meunier,et al.  Preparation et proprietes chimiques de l′inorganomagnesien Cp(DPPE)FeMgBr , 1978 .

[50]  J. Kochi Homo coupling, disproportionation and cross coupling of alkyl groups. Role of the transition metal catalyst , 2002 .

[51]  H. Shinokubo,et al.  Transition Metal‐Catalyzed Carbon−Carbon Bond Formation with Grignard Reagents − Novel Reactions with a Classic Reagent , 2004 .

[52]  A. Fürstner,et al.  Iron-catalyzed cross-coupling reactions. , 2002, Journal of the American Chemical Society.

[53]  B. Bogdanović,et al.  Übergangsmetallkatalysierte Herstellung von Grignard-Verbindungen , 2000 .

[54]  A. Fürstner,et al.  Cross-coupling of alkyl halides with aryl grignard reagents catalyzed by a low-valent iron complex. , 2004, Angewandte Chemie.

[55]  S. C. Huckett,et al.  Inorganic Grignard Reagents. Preparation and Their Application for the Synthesis of Highly Active Metals, Intermetallics, and Alloys , 1995 .

[56]  Helmut Bertagnolli,et al.  X‐Ray Absorption Spectroscopy of Amorphous Solids, Liquids, and Catalytic and Biochemical Systems—Capabilities and Limitations , 1994 .

[57]  H. Rzepa,et al.  Correlation of metal spin state with catalytic reactivity: polymerizations mediated by alpha-diimine-iron complexes. , 2006, Angewandte Chemie.

[58]  P. Knowles,et al.  Preparation and crystal structure of π-cyclopentadienyl-1,2-bis(diphenylphosphino)ethaneironmagnesium bromide tris(tetrahydrofuran), a transition–metal Grignard reagent , 1974 .

[59]  Masaharu Nakamura,et al.  Iron-catalysed cross-coupling of halohydrins with aryl aluminium reagents: a protecting-group-free strategy attaining remarkable rate enhancement and diastereoinduction. , 2012, Chemical communications.

[60]  M. Bauer,et al.  Spectroscopic set-up for simultaneous UV-Vis/(Q)EXAFS in situ and in operando studies of homogeneous reactions under laboratory conditions. , 2010, Journal of synchrotron radiation.

[61]  Uwe Kolb,et al.  Investigation of the Formation Reaction and Structural Characterization of the „Platinum Grignard Reagent”︁ [Pt(MgCl)2(THF)x] by Extended X‐ray absorption fine structure (EXAFS) and Other methods , 1997 .

[62]  T. Jones,et al.  Nano-electrochemical detection of hydrogen or protons using palladium nanoparticles: distinguishing surface and bulk hydrogen. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[63]  R. Wolf,et al.  Catalytic Properties of Low Oxidation State Iron Complexes in Cross‐Coupling Reactions: Anthracene Iron(−I) Complexes as Competent Catalysts , 2011 .