Dynamic sliding mode control design using attracting ellipsoid method

A methodology for the design of sliding mode controllers for linear systems subjected to matched and unmatched perturbations is proposed. It is considered that the control signal is applied through a first-order low-pass filter. The technique is based on the existence of an attracting (invariant) ellipsoid such that the convergence to a quasi-minimal region of the origin using the suboptimal control signal is guaranteed. The design procedure is given in terms of the solution of a set of Matrix Inequalities. A benchmark example illustrating the design is given.

[1]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[2]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[3]  H. Sira-Ramírez On the dynamical sliding mode control of nonlinear systems , 1993 .

[4]  A. N. Atassi,et al.  Separation results for the stabilization of nonlinear systems using different high-gain observer designs ☆ , 2000 .

[5]  Tianping Chen,et al.  Global convergence of delayed dynamical systems , 2001, IEEE Trans. Neural Networks.

[6]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[7]  Jun Wang,et al.  Global asymptotic stability and global exponential stability of continuous-time recurrent neural networks , 2002, IEEE Trans. Autom. Control..

[8]  Alexander S. Poznyak,et al.  Minimization of the unmatched disturbances in the sliding mode control systems via invariant ellipsoid method , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[9]  Yury Orlov,et al.  Switched chattering control vs. backlash/friction phenomena in electrical servo-motors , 2003 .

[10]  Yuri B. Shtessel,et al.  AN ASYMPTOTIC SECOND‐ORDER SMOOTH SLIDING MODE CONTROL , 2003 .

[11]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[12]  Leonid M. Fridman,et al.  Singularly perturbed analysis of chattering in relay control systems , 2002, IEEE Trans. Autom. Control..

[13]  Norikazu Takahashi,et al.  A new sufficient condition for complete stability of cellular neural networks with delay , 2000 .

[14]  A. Poznyak Stochastic output noise effects in sliding mode state estimation , 2003 .

[15]  Tianping Chen,et al.  Global exponential stability of delayed Hopfield neural networks , 2001, Neural Networks.

[16]  Alessandro Pisano,et al.  Output-feedback control of an underwater vehicle prototype by higher-order sliding modes , 2004, Autom..

[17]  Jiye Zhang,et al.  Global stability analysis of bidirectional associative memory neural networks with time delay , 2001, Int. J. Circuit Theory Appl..

[18]  Giorgio Bartolini,et al.  A survey of applications of second-order sliding mode control to mechanical systems , 2003 .

[19]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[20]  Darren M. Dawson,et al.  A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems , 2004, Autom..

[21]  Réjean Plamondon,et al.  On the stability analysis of delayed neural networks systems , 2001, Neural Networks.

[22]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[23]  Hebertt Sira-Ramírez,et al.  Dynamic second-order sliding mode control of the hovercraft vessel , 2002, IEEE Trans. Control. Syst. Technol..

[24]  S. Mohamad Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks , 2001 .

[25]  Christopher Edwards,et al.  Sliding-Mode Output-Feedback Control Based on LMIs for Plants With Mismatched Uncertainties , 2009, IEEE Transactions on Industrial Electronics.

[26]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[27]  Boris T. Polyak,et al.  Rejection of bounded exogenous disturbances by the method of invariant ellipsoids , 2007 .

[28]  Mohamed Djemai,et al.  Sliding Mode Observers , 2002 .

[29]  Han Ho Choi Sliding-Mode Output Feedback Control Design , 2008, IEEE Transactions on Industrial Electronics.

[30]  Teh-Lu Liao,et al.  Global stability for cellular neural networks with time delay , 2000, IEEE Trans. Neural Networks Learn. Syst..

[31]  Vadim I. Utkin,et al.  Sliding Mode Observers , 2017 .

[32]  J. Slotine,et al.  On Sliding Observers for Nonlinear Systems , 1986, 1986 American Control Conference.

[33]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[34]  J. Alvarez,et al.  An Invariance Principle for Discontinuous Dynamic Systems With Application to a Coulomb Friction Oscillator , 2000 .

[35]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[36]  Leonid M. Fridman,et al.  Analysis and design of integral sliding manifolds for systems with unmatched perturbations , 2006, IEEE Transactions on Automatic Control.

[37]  S. Żak,et al.  Robust output feedback stabilization of uncertain dynamic systems with bounded controllers , 1993 .

[38]  Jin Xu,et al.  On the global stability of delayed neural networks , 2003, IEEE Trans. Autom. Control..

[39]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[40]  Leonid M. Fridman,et al.  An averaging approach to chattering , 2001, IEEE Trans. Autom. Control..

[41]  Liu Hsu,et al.  MODEL-REFERENCE OUTPUT-FEEDBACK SLIDING MODE CONTROLLER FOR A CLASS OF MULTIVARIABLE NONLINEAR SYSTEMS , 2008 .