Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles.

Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt-O species on ceria and to elucidate the extraordinary structure-activity dependence of ceria-based catalysts in general.

[1]  Avelino Corma,et al.  Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. , 2004, Angewandte Chemie.

[2]  C. Kubiak,et al.  In the Water Gas Shift Reaction , 2007 .

[3]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[4]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[5]  Konstantin M. Neyman,et al.  Density functional studies of model cerium oxide nanoparticles. , 2008, Physical chemistry chemical physics : PCCP.

[6]  Konstantin M. Neyman,et al.  Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. , 2010, Chemistry.

[7]  Joachim Sauer,et al.  Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). , 2009, Physical review letters.

[8]  H. Freund,et al.  Oxygen storage at the metal/oxide interface of catalyst nanoparticles. , 2005, Angewandte Chemie.

[9]  Konstantin M. Neyman,et al.  Understanding Ceria Nanoparticles from First-Principles Calculations , 2007 .

[10]  M. Bowker The 2007 Nobel Prize in Chemistry for surface chemistry: understanding nanoscale phenomena at surfaces. , 2007, ACS nano.

[11]  Konstantin M. Neyman,et al.  Towards size-converged properties of model ceria nanoparticles: Monitoring by adsorbed CO using DFT + U approach , 2008 .

[12]  R. Schlögl,et al.  Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism , 2006 .

[13]  M. Lorenz,et al.  Microscopic insights into methane activation and related processes on Pt/ceria model catalysts. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[15]  Konstantin M. Neyman,et al.  Adsorption, Oxidation State, and Diffusion of Pt Atoms on the CeO2(111) Surface , 2010 .

[16]  Konstantin M. Neyman,et al.  Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale , 2010 .

[17]  Raymond J. Gorte,et al.  Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties , 1998 .

[18]  N. Sammes,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[19]  R. Gorte,et al.  Oxidation enthalpies for reduction of ceria surfaces , 2007 .

[20]  G. Graham,et al.  Pd oxidation under UHV in a model Pd/ceria–zirconia catalyst , 2001 .

[21]  John L. Falconer,et al.  Spillover in Heterogeneous Catalysis , 1995 .

[22]  M. S. Chen,et al.  The Structure of Catalytically Active Gold on Titania , 2004, Science.

[23]  Jacques Jupille,et al.  Real-Time Monitoring of Growing Nanoparticles , 2003, Science.

[24]  K. Hermansson,et al.  Structural and electronic properties of NM-doped ceria (NM = Pt, Rh): a first-principles study , 2008 .

[25]  K. Prince,et al.  Epitaxial growth of continuous CeO2( 111) ultra-thin films on Cu(111) , 2008 .

[26]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[27]  T. Risse,et al.  Preparation and characterization of model catalysts: from ultrahigh vacuum to in situ conditions at the atomic dimension , 2003 .

[28]  R. Gorte,et al.  Evidence for Low-Temperature Oxygen Migration from Ceria to Rh , 1993 .

[29]  K. Prince,et al.  A resonant photoelectron spectroscopy study of Sn(Ox) doped CeO2 catalysts , 2008 .

[30]  E. McFarland,et al.  Methane complete and partial oxidation catalyzed by Pt-doped CeO2 , 2010 .

[31]  S. C. Parker,et al.  Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria , 2005 .

[32]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[33]  D. Mullins,et al.  Metal–support interactions between Pt and thin film cerium oxide , 2002 .

[34]  Konstantin M. Neyman,et al.  Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. , 2010, Chemical communications.

[35]  Zongxian Yang,et al.  First-principles study of the Pt/CeO2"111… interface , 2007 .

[36]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[37]  V. Fiorin,et al.  Microcalorimetry of O2 and NO on flat and stepped platinum surfaces , 2009 .

[38]  J. Hrbek,et al.  Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction , 2007, Science.

[39]  Paolo Fornasiero,et al.  Automotive catalytic converters: current status and some perspectives , 2003 .

[40]  I. Matolínová,et al.  Growth of ultra-thin cerium oxide layers on Cu(111) , 2007 .

[41]  Robert Walter McCabe,et al.  Automotive exhaust catalysis , 2003 .

[42]  U. Landman,et al.  Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition. , 2009, Journal of the American Chemical Society.

[43]  Matsumoto,et al.  Resonant photoemission study of CeO2. , 1994, Physical review. B, Condensed matter.

[44]  S. Torbruegge,et al.  Morphology of step structures on CeO2(111) , 2008 .

[45]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[46]  H. Freund,et al.  Molecular beam experiments on model catalysts , 2005 .

[47]  Manos Mavrikakis,et al.  Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions , 2010, Science.

[48]  M. Salmeron,et al.  In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: hydrogen-induced burial and dig out of metallic nickel. , 2010, Chemical communications.

[49]  Konstantin M. Neyman,et al.  Erratum: First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter [Phys. Rev. B 75, 035115 (2007)] , 2011 .

[50]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[51]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[52]  N. Rösch,et al.  Oxidation of supported rhodium clusters by support hydroxy groups. , 2003, Angewandte Chemie.

[53]  Rachel B. Getman,et al.  DFT-Based Characterization of the Multiple Adsorption Modes of Nitrogen Oxides on Pt(111) , 2007 .

[54]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[55]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[56]  Chemistry of Surfaces , 1967, Nature.

[57]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.