Adaptive Algorithms for Online Convex Optimization with Long-term Constraints

We present an adaptive online gradient descent algorithm to solve online convex optimization problems with long-term constraints , which are constraints that need to be satisfied when accumulated over a finite number of rounds T , but can be violated in intermediate rounds. For some user-defined trade-off parameter $\beta$ $\in$ (0, 1), the proposed algorithm achieves cumulative regret bounds of O(T^max{$\beta$,1--$\beta$}) and O(T^(1--$\beta$/2)) for the loss and the constraint violations respectively. Our results hold for convex losses and can handle arbitrary convex constraints without requiring knowledge of the number of rounds in advance. Our contributions improve over the best known cumulative regret bounds by Mahdavi, et al. (2012) that are respectively O(T^1/2) and O(T^3/4) for general convex domains, and respectively O(T^2/3) and O(T^2/3) when further restricting to polyhedral domains. We supplement the analysis with experiments validating the performance of our algorithm in practice.

[1]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[2]  Arindam Banerjee,et al.  Online Alternating Direction Method , 2012, ICML.

[3]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[4]  Baruch Awerbuch,et al.  Online linear optimization and adaptive routing , 2008, J. Comput. Syst. Sci..

[5]  Sham M. Kakade,et al.  Mind the Duality Gap: Logarithmic regret algorithms for online optimization , 2008, NIPS.

[6]  Alexandre d'Aspremont,et al.  Convex Relaxations for Permutation Problems , 2013, SIAM J. Matrix Anal. Appl..

[7]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[8]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[9]  Jinfeng Yi,et al.  Stochastic Gradient Descent with Only One Projection , 2012, NIPS.

[10]  Nikhil R. Devanur,et al.  Fast Algorithms for Online Stochastic Convex Programming , 2014, SODA.

[11]  Aleksandrs Slivkins,et al.  Bandits with Knapsacks , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[12]  Francis Bach,et al.  SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives , 2014, NIPS.

[13]  Arindam Banerjee,et al.  Online Alternating Direction Method (longer version) , 2013, ArXiv.

[14]  Rong Jin,et al.  Trading regret for efficiency: online convex optimization with long term constraints , 2011, J. Mach. Learn. Res..

[15]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[16]  Kilian Q. Weinberger,et al.  The Greedy Miser: Learning under Test-time Budgets , 2012, ICML.

[17]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[18]  Rong Jin,et al.  Efficient Constrained Regret Minimization , 2012, ArXiv.

[19]  Amnon Shashua,et al.  Doubly Stochastic Normalization for Spectral Clustering , 2006, NIPS.

[20]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[21]  John N. Tsitsiklis,et al.  Online Learning with Constraints , 2006, COLT.

[22]  Manfred K. Warmuth,et al.  Learning Permutations with Exponential Weights , 2007, COLT.

[23]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[24]  Alejandro Ribeiro,et al.  A Saddle Point Algorithm for Networked Online Convex Optimization , 2014, IEEE Transactions on Signal Processing.

[25]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[26]  Claude Lemaréchal,et al.  Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..

[27]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[28]  Matthew J. Streeter,et al.  Adaptive Bound Optimization for Online Convex Optimization , 2010, COLT 2010.

[29]  Shai Shalev-Shwartz,et al.  Online Learning and Online Convex Optimization , 2012, Found. Trends Mach. Learn..

[30]  Elad Hazan,et al.  Projection-free Online Learning , 2012, ICML.