Dicussion on the meeting on ‘Statistical approaches to inverse problems’
暂无分享,去创建一个
Simon J. Godsill | Dan Cornford | Eric Moulines | Christophe Andrieu | Noel A Cressie | Christian P. Robert | Heikki Haario | Patrick J. Wolfe | Manfred Opper | Felix Abramovich | Marianna Pensky | Axel Munk | Sofia C. Olhede | Gerard Kerkyacharian | Dominique Picard | Eero Saksman | Robert G. Aykroyd | Lehel Csató | Guy P. Nason | Manuel Davy | Iain M. Johnstone | Marc Raimondo | Alexandre B. Tsybakov | Marko Laine | Laurent Cavalier | Johanna Tamminen | Robert West | G Wahba | G. Wahba | A. Tsybakov | I. Johnstone | M. Davy | M. Opper | É. Moulines | C. Robert | C. Andrieu | G. Kerkyacharian | D. Picard | H. Haario | E. Saksman | S. Godsill | F. Abramovich | N. Cressie | D. Cornford | F. Ruymgaart | L. Csató | P. Wolfe | A. Munk | G. Nason | L. Cavalier | C. Butucea | M. Pensky | A. Stoffelen | R. Aykroyd | S. Olhede | W. Ng | M. Laine | M. Lehtinen | J. Tamminen | David J. Evans | M. Raimondo | D. D. Canditiis | M. Lehtinen | R. West | S. Meng | Debolina Paul | U. Golubev | R. Hoffman | E. Khabie-Zeitoune | A Stoffelen | D Paul | S. Meng | C Butucea | D De Canditiis | U Golubev | R Hoffman | E Khabie-Zeitoune | F Ruymgaart | W Ng
[1] Ad Stoffelen,et al. Ambiguity removal and assimilation of scatterometer data , 1997 .
[2] D. Donoho. Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .
[3] A. Tsybakov,et al. Sharp adaptation for inverse problems with random noise , 2002 .
[4] A. Zayed,et al. Density Deconvolution of Different Conditional Distributions , 2002 .
[5] Robert G Aykroyd,et al. Markov chain Monte Carlo techniques and spatial-temporal modelling for medical EIT. , 2004, Physiological measurement.
[6] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[7] Inverting noisy integral equations using wavelet expansions: a class of irregular convolutions , 2001 .
[8] Eero P. Simoncelli,et al. Random Cascades on Wavelet Trees and Their Use in Analyzing and Modeling Natural Images , 2001 .
[9] Ole Winther,et al. TAP Gibbs Free Energy, Belief Propagation and Sparsity , 2001, NIPS.
[10] Vladimir Koltchinskii,et al. On inverse problems with unknown operators , 2001, IEEE Trans. Inf. Theory.
[11] C. Butucea. Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data , 2004 .
[12] I. Johnstone,et al. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.
[13] Aldo V. Vecchia,et al. Fitting Continuous ARMA Models to Unequally Spaced Spatial Data , 1993 .
[14] Monika Dörfler,et al. Time-Frequency Analysis for Music Signals: A Mathematical Approach , 2001 .
[15] C. Robert,et al. Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .
[16] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[17] O. Cappé,et al. Population Monte Carlo , 2004 .
[18] Robert D. Nowak,et al. Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..
[19] Richard G. Baraniuk,et al. Multiscale image segmentation using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..
[20] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[21] D. Geman. Random fields and inverse problems in imaging , 1990 .
[22] Philippe Courtier,et al. Interactions of Dynamics and Observations in a Four-Dimensional Variational Assimilation , 1993 .
[23] Ross N. Hoffman,et al. SASS wind ambiguity removal by direct minimization. II - Use of smoothness and dynamical constraints , 1984 .
[24] M. J. R. Healy,et al. Multichannel Time Series Analysis with Digital Computer Programs. , 1978 .
[25] David L. Donoho,et al. Translation Invariant deconvolution in a Periodic Setting , 2004, Int. J. Wavelets Multiresolution Inf. Process..
[26] Mario Bertero,et al. Introduction to Inverse Problems in Imaging , 1998 .
[27] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[28] Martin J. Wainwright,et al. Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..
[29] G. Nason,et al. Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum , 2000 .
[30] David G. Long,et al. An assessment of SeaWinds on QuikSCAT wind retrieval , 2002 .
[31] James R. Hopgood,et al. Bayesian single channel blind deconvolution using parametric signal and channel models , 1999, Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452).
[32] Simon J. Godsill,et al. Bayesian Estimation of Time-Frequency Coefficients for Audio Signal Enhancement , 2002, NIPS.
[33] N. Hengartner,et al. Adaptive estimation for inverse problems with noisy operators , 2005 .
[34] C. Butucea,et al. Nonparametric homogeneity tests , 2006 .
[35] Rémi Gribonval,et al. Harmonic decomposition of audio signals with matching pursuit , 2003, IEEE Trans. Signal Process..
[36] C. W. Groetsch,et al. Generalized inverses of linear operators : representation and approximation , 1977 .
[37] B. Silverman,et al. Wavelet decomposition approaches to statistical inverse problems , 1998 .
[38] Dominique Picard,et al. Thresholding algorithms, maxisets and well-concentrated bases , 2000 .
[39] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[40] G. Wahba,et al. When is the optimal regularization parameter insensitive to the choice of the loss function , 1990 .
[41] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[42] Dirk Roose,et al. Wavelet-based image denoising using a Markov random field a priori model , 1997, IEEE Trans. Image Process..
[43] Lars Isaksen,et al. Impact of NSCAT Winds on Tropical Cyclones in the ECMWF 4DVAR Assimilation System , 2003 .
[44] Richard G. Baraniuk,et al. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , 2004, IEEE Transactions on Signal Processing.
[45] H. Schultz. A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data , 1990 .
[46] Dan Cornford,et al. Outlier detection in scatterometer data: neural network approaches , 2003, Neural Networks.
[47] Robert Atlas,et al. A comparison of a two-dimensional variational analysis method and a median filter for NSCAT ambiguity removal , 2003 .
[48] Robert G. Aykroyd,et al. Spatial-temporal modeling for electrical impedance imaging of a mixing process , 2005 .
[49] I. Johnstone,et al. Periodic boxcar deconvolution and diophantine approximation , 2004, math/0503663.
[50] R. Dahlhaus. Fitting time series models to nonstationary processes , 1997 .
[51] J. Tamminen. Validation of nonlinear inverse algorithms with Markov chain Monte Carlo method , 2004 .
[52] Sylvain Sardy. Minimax threshold for denoising complex signals with Waveshrink , 2000, IEEE Trans. Signal Process..
[53] N. Huang,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[54] C. Robert,et al. Controlled MCMC for Optimal Sampling , 2001 .
[55] David G. Long,et al. A median-filter-based ambiguity removal algorithm for NSCAT , 1991, IEEE Trans. Geosci. Remote. Sens..
[56] Michael H. Neumann,et al. Exact Risk Analysis of Wavelet Regression , 1998 .
[57] J. Andrew Royle,et al. A Hierarchical Spatial Model for Constructing Wind Fields from Scatterometer Data in the Labrador Sea , 1999 .
[58] Stephen D. Casey,et al. Systems of Convolution Equations, Deconvolution, Shannon Sampling, and the Wavelet and Gabor Transforms , 1994, SIAM Rev..
[59] Robert L. Paige,et al. Using wavelet methods to solve noisy Abel-type equations with discontinuous inputs , 2003 .
[60] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[61] F. Aghdasi,et al. Reduction of boundary artifacts in image restoration , 1996, IEEE Trans. Image Process..
[62] G. Nason,et al. Real nonparametric regression using complex wavelets , 2004 .