An Upper Bound for the Clar Number of Fullerene Graphs

A fullerene graph is a three-regular and three-connected plane graph exactly 12 faces of which are pentagons and the remaining faces are hexagons. Let Fn be a fullerene graph with n vertices. The Clar number c(Fn) of Fn is the maximum size of sextet patterns, the sets of disjoint hexagons which are all M-alternating for a perfect matching (or Kekulé structure) M of Fn. A sharp upper bound of Clar number for any fullerene graphs is obtained in this article: $$c(F_n)\leqslant \lfloor \frac {n-12} 6\rfloor$$. Two famous members of fullerenes C60 (Buckministerfullerene) and C70 achieve this upper bound. There exist infinitely many fullerene graphs achieving this upper bound among zigzag and armchair carbon nanotubes.

[1]  S El-Basil Clar sextet theory of buckminsterfullerene (C 60 ) , 2000 .

[2]  E. Clar The aromatic sextet , 1972 .

[3]  Harold W. Kroto,et al.  Isolation, separation and characterisation of the fullerenes C60 and C70 : the third form of carbon , 1990 .

[4]  Heping Zhang,et al.  A comparison between 1-factor count and resonant pattern count in plane non-bipartite graphs , 2005 .

[5]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[6]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[7]  Ivan Gutman,et al.  Clar number of hexagonal chains , 2004 .

[8]  Andreas W. M. Dress,et al.  A Constructive Enumeration of Fullerenes , 1997, J. Algorithms.

[9]  Lusheng Wang,et al.  k-Resonance of Open-Ended Carbon Nanotubes , 2004 .

[10]  Tomislav Došlić,et al.  Cyclical Edge-Connectivity of Fullerene Graphs and (k, 6)-Cages , 2003 .

[11]  Pierre Hansen,et al.  Upper bounds for the Clar number of a benzenoid hydrocarbon , 1992 .

[12]  Pierre Hansen,et al.  The Clar number of a benzenoid hydrocarbon and linear programming , 1994 .

[13]  Sandi Klavžar,et al.  Clar number of catacondensed benzenoid hydrocarbons , 2002 .

[14]  C. Griehl,et al.  Molecular interactions in conjugates of dicarboxylic acids and amino acids , 2003 .

[15]  Gary W. Atkinson,et al.  The Clar and Fries problems for benzenoid hydrocarbons are linear programs , 1998, Discrete Mathematical Chemistry.

[16]  Heping Zhang,et al.  Clar and sextet polynomials of buckminsterfullerene , 2003 .

[17]  S. J. Cyvin,et al.  Introduction to the theory of benzenoid hydrocarbons , 1989 .

[18]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[19]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[20]  J. Bohr,et al.  C60 a new form of carbon , 1992 .