Determination of organic and elemental carbon in atmospheric aerosol samples by thermal evolution

A simple apparatus is described for determination of volatile organic and elemental carbon fractions in filter-collected atmospheric aerosol samples. The two-step technique involves rapid heating and thermoevolution of organic carbon at 400/sup 0/C in helium carrier gas, followed by removal of elemental carbon at 700/sup 0/C in 10% O/sub 2//He. Evolved carbon is converted to CO/sub 2/ on copper oxide catalyst, purified, and analyzed by nondispersive infrared (NDIR) spectrometry. Flash heating of ambient aerosol samples minimizes organic-to-elemental carbon conversion, allowing determination of organic and elemental carbon fractions with relative standard deviations of +/-8% and +/-12%, respectively, for total carbon loadings of 6-50 ..mu..g of C/cm/sup 2/ filter area. Blank filter variability, sample heating duration, and the effects of sample heating rates and pyrolysis temperature are evaluated. Ambient aerosol carbon data from both urban and remote sampling sites are presented and discussed.

[1]  G. Wolff,et al.  Particulate carbon, atmospheric life cycle , 1982 .

[2]  Shujaat Ahmad,et al.  Instrumental neutron activation analysis of Obsidian rock , 1981 .

[3]  E. Gladney,et al.  Evaluation of a boron-filtered epithermal neutron irradiation facility , 1980 .

[4]  P. Groblicki,et al.  Automated carbon analyzer for particulate samples , 1980 .

[5]  M. F. Phillips,et al.  Filter material for sampling of ambient aerosols , 1980 .

[6]  Richard M. Lindstrom,et al.  Neutron-capture prompt .gamma.-ray activation analysis for multielement determination in complex samples , 1979 .

[7]  S. Japar,et al.  Photoacoustic and absorption spectrum of airborne carbon particulate using a tunable dye laser , 1979 .

[8]  J. Daisey,et al.  THE NATURE OF THE ORGANIC FRACTION OF THE NEW YORK CITY SUMMER AEROSOL * , 1979 .

[9]  H. Puxbaum Thermo-Gasanalysator zur Charakterisierung von Kohlenstoff- und Schwefelverbindungen in luftgetragenen Stäuben , 1979 .

[10]  L. Gundel,et al.  Identification of the optically absorbing component in urban aerosols. , 1978, Applied optics.

[11]  L. Friedman,et al.  Mass spectrometer study of evaporation of alpha-amino acids. , 1977, Journal of the American Chemical Society.

[12]  P. A. Baedecker,et al.  Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems , 1977 .

[13]  H. Malissa,et al.  Zur simultanen relativkonduktometrischen Kohlenstoff- und Schwefelbestimmung in Stäuben , 1976 .

[14]  R. Charlson,et al.  Molecular composition of secondary aerosol and its possible origin , 1975 .

[15]  D. Grosjean Solvent extraction and organic carbon determination in atmospheric particulate matter: the organic extraction-organic carbon analyzer (OE-OCA) technique. , 1975, Analytical chemistry.

[16]  L. Friedman,et al.  Proton transfer mass spectrometry of peptides. A rapid heating technique for underivatized peptides containing arginine. , 1974, Journal of the American Chemical Society.

[17]  P. Mueller,et al.  Chemical composition of Pasadena aerosol by particle size and time of day. IV. Carbonate and noncarbonate carbon content , 1972 .

[18]  Grafton D. Chase,et al.  Principles of Radioisotope Methodology , 1967 .