Algebraic Theories over Nominal Sets

We investigate the foundations of a theory of algebraic data types with variable binding inside classical universal algebra. In the first part, a category-theoretic study of monads over the nominal sets of Gabbay and Pitts leads us to introduce new notions of finitary based monads and uniform monads. In a second part we spell out these notions in the language of universal algebra, show how to recover the logics of Gabbay-Mathijssen and Clouston-Pitts, and apply classical results from universal algebra.

[1]  Andrew M. Pitts,et al.  A new approach to abstract syntax involving binders , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[2]  Alexander Kurz,et al.  On universal algebra over nominal sets , 2010, Math. Struct. Comput. Sci..

[3]  Nikos Tzevelekos Full abstraction for nominal general references , 2007, LICS.

[4]  Jiří Adámek,et al.  On sifted colimits and generalized varieties. , 2001 .

[5]  John Power,et al.  Pseudo-distributive laws and axiomatics for variable binding , 2006, High. Order Symb. Comput..

[6]  John Power,et al.  Category Theoretic Semantics for Typed Binding Signatures with Recursion , 2008, Fundam. Informaticae.

[7]  Alexander Kurz,et al.  Functorial Coalgebraic Logic: The Case of Many-sorted Varieties , 2008, CMCS.

[8]  Alexander Kurz,et al.  Strongly Complete Logics for Coalgebras , 2012, Log. Methods Comput. Sci..

[9]  Davide Sangiorgi,et al.  A Fully Abstract Model for the [pi]-calculus , 1996, Inf. Comput..

[10]  Marcello M. Bonsangue,et al.  Pi-Calculus in Logical Form , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[11]  Murdoch James Gabbay Nominal Algebra and the HSP Theorem , 2009, J. Log. Comput..

[12]  P. T. Johnstone,et al.  Adjoint Lifting Theorems for Categories of Algebras , 1975 .

[13]  Jirí Adámek,et al.  Algebraic Theories: A Categorical Introduction to General Algebra , 2010 .

[14]  C. Hur,et al.  Equational systems and free constructions , 2007 .

[15]  Marco Pistore,et al.  Minimizing Transition Systems for Name Passing Calculi: A Co-algebraic Formulation , 2002, FoSSaCS.

[16]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[17]  Andrew M. Pitts,et al.  Nominal Equational Logic , 2007, Electron. Notes Theor. Comput. Sci..

[18]  Martin Hofmann Semantical analysis of higher-order abstract syntax , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[19]  Ian Stark,et al.  Free-algebra models for the pi -calculus , 2008, Theor. Comput. Sci..

[20]  Murdoch James Gabbay,et al.  Nominal (Universal) Algebra: Equational Logic with Names and Binding , 2009, J. Log. Comput..