Multiple wavelength InGaAs quantum dot lasers using selective area epitaxy

The authors demonstrate multiple wavelength lasers fabricated from InGaAs quantum dots. Selective area epitaxy is used to grow the active region, consisting of five layer stack of InGaAs quantum dots with different band gap energies in selected regions of the substrate, for fabrication of the lasers. The mechanism responsible for engineering of the band gap of quantum dots is discussed. The performance of the selectively grown lasers is compared to the lasers fabricated from structures grown in a standard, nonselective area growth process.

[1]  H. Tan,et al.  Integration of an InGaAs quantum-dot laser with a low-loss passive waveguide using selective-area epitaxy , 2006, IEEE Photonics Technology Letters.

[2]  H. Tan,et al.  Controlling the properties of InGaAs quantum dots by selective-area epitaxy , 2005 .

[3]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[4]  David T. D. Childs,et al.  1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density , 2004 .

[5]  H. Tan,et al.  Investigation of the blueshift in electroluminescence spectra from MOCVD grown InGaAs quantum dots , 2004, IEEE Journal of Quantum Electronics.

[6]  H. Tan,et al.  Low loss, thin p-clad 980-nm InGaAs semiconductor laser diodes with an asymmetric structure design , 2003 .

[7]  Mikhail V. Maximov,et al.  InAs/InGaAs/GaAs quantum dot lasers of 1.3 /spl mu/m range with high (88%) differential efficiency , 2002 .

[8]  P. Dapkus,et al.  Two-segment spectrally inhomogeneous traveling wave semiconductor optical amplifiers applied to spectral equalization , 2002, IEEE Photonics Technology Letters.

[9]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[10]  M. Hopkinson,et al.  Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. , 2001, Physical review letters.

[11]  Yasuhiko Arakawa,et al.  Area-controlled growth of InAs quantum dots and improvement of density and size distribution , 2000 .

[12]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[13]  David T. D. Childs,et al.  SCANNING TRANSMISSION-ELECTRON MICROSCOPY STUDY OF INAS/GAAS QUANTUM DOTS , 1998 .

[14]  S. D. Roh,et al.  MQW DBR lasers with monolithically integrated external-cavity electroabsorption modulators fabricated without modification of the active region , 1997, IEEE Photonics Technology Letters.

[15]  J. Coleman,et al.  MQW wavelength-tunable DBR lasers with monolithically integrated external cavity electroabsorption modulators with low-driving voltages fabricated by selective-area MOCVD , 1996, IEEE Photonics Technology Letters.

[16]  Mark Osowski,et al.  Strained-Layer InGaAs-GaAs-AIGaAs Buried-Heterostructure Lasers with Nonabsorbing Mirrors by Selective-Area MOCVD , 1995, Semiconductor Lasers Advanced Devices and Applications.

[17]  I. M. Robertson,et al.  Wavelength tuning in strained layer InGaAs-GaAs-AlGaAs quantum well lasers by selective-area MOCVD , 1994 .