Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface.

Gradual and reversible tuning of the torsion angle of an amphiphilic chiral binaphthyl, from -90° to -80°, was achieved by application of a mechanical force to its molecular monolayer at the air-water interface. This 2D interface was an ideal location for mechanochemistry for molecular tuning and its experimental and theoretical analysis, since this lowered dimension enables high orientation of molecules and large variation in the area. A small mechanical energy (<1 kcal mol(-1) ) was applied to the monolayer, causing a large variation (>50 %) in the area of the monolayer and modification of binaphthyl conformation. Single-molecule simulations revealed that mechanical energy was converted proportionally to torsional energy. Molecular dynamics simulations of the monolayer indicated that the global average torsion angle of a monolayer was gradually shifted.

[1]  T. Martínez,et al.  A remote stereochemical lever arm effect in polymer mechanochemistry. , 2014, Journal of the American Chemical Society.

[2]  R. Kuroda,et al.  The circular dichroism, crystal and molecular structure, and absolute configuration, of dinaphtho[2,1-c,1',2'-e]dithiin , 1981 .

[3]  Katsuhiko Ariga,et al.  A mechanically controlled indicator displacement assay. , 2012, Angewandte Chemie.

[4]  D. Cadenhead,et al.  Monolayer studies of hydroxyhexadecanoic acids , 1978 .

[5]  Katsuhiko Ariga,et al.  Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. , 2006, Journal of the American Chemical Society.

[6]  Hiroko Yamada,et al.  Design amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states , 2014, Nature Communications.

[7]  D. Marx,et al.  The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. , 2013, Nature chemistry.

[8]  Mitchell T. Ong,et al.  Force-induced activation of covalent bonds in mechanoresponsive polymeric materials , 2009, Nature.

[9]  Miguel A. Garcia-Garibay,et al.  Molekülkristalle in Bewegung: von topotaktischen Photoreaktionen zu molekularen Maschinen , 2007 .

[10]  Jeremy M. Lenhardt,et al.  From molecular mechanochemistry to stress-responsive materials , 2011 .

[11]  S. Vyskocil,et al.  Non-symmetrically substituted 1,1'-binaphthyls in enantioselective catalysis. , 2003, Chemical reviews.

[12]  S. Craig,et al.  Photomechanical actuation of ligand geometry in enantioselective catalysis. , 2014, Angewandte Chemie.

[13]  M. Garcia‐Garibay Molecular crystals on the move: from single-crystal-to-single-crystal photoreactions to molecular machinery. , 2007, Angewandte Chemie.

[14]  Euan R. Kay,et al.  Synthetische molekulare Motoren und mechanische Maschinen , 2007 .

[15]  R. Boulatov,et al.  Chemomechanics: chemical kinetics for multiscale phenomena. , 2011, Chemical Society reviews.

[16]  E. W. Meijer,et al.  Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. , 2012, Nature chemistry.

[17]  B. Grzybowski,et al.  Mechanically driven activation of polyaniline into its conductive form. , 2014, Angewandte Chemie.

[18]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[19]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[20]  C. Seidel,et al.  Mechanochemistry: Molecules under pressure. , 2014, Nature nanotechnology.

[21]  Pierre Gaspard,et al.  From non-covalent assemblies to molecular machines , 2010 .

[22]  Hongbin Li,et al.  Single molecule force spectroscopy reveals that iron is released from the active site of rubredoxin by a stochastic mechanism. , 2013, Journal of the American Chemical Society.

[23]  R. Boulatov,et al.  The physical chemistry of mechanoresponsive polymers , 2011 .

[24]  X. Tao,et al.  Oriented single-crystal-to-single-crystal phase transition with dramatic changes in the dimensions of crystals. , 2014, Journal of the American Chemical Society.

[25]  C. Weder,et al.  Mechanochemistry with metallosupramolecular polymers. , 2014, Journal of the American Chemical Society.

[26]  L. D. Bari,et al.  Conformational Study of 2,2‘-Homosubstituted 1,1‘-Binaphthyls by Means of UV and CD Spectroscopy , 1999 .

[27]  Hiroyasu Sato,et al.  Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. , 2013, Journal of the American Chemical Society.

[28]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[29]  Takashi Kato,et al.  Brightly tricolored mechanochromic luminescence from a single-luminophore liquid crystal: reversible writing and erasing of images. , 2011, Angewandte Chemie.

[30]  Katsuhiko Ariga,et al.  Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. , 2010, Journal of the American Chemical Society.

[31]  L. Takács The historical development of mechanochemistry. , 2013, Chemical Society reviews.

[32]  R. Boulatov,et al.  Model studies of force-dependent kinetics of multi-barrier reactions , 2013, Nature Communications.

[33]  Andrew J. Boydston,et al.  "Flex-activated" mechanophores: using polymer mechanochemistry to direct bond bending activation. , 2013, Journal of the American Chemical Society.

[34]  J. Lenhardt,et al.  A backbone lever-arm effect enhances polymer mechanochemistry. , 2013, Nature chemistry.

[35]  Tadashi Mori,et al.  Experimental and Theoretical Studies on the Chiroptical Properties of Donor−Acceptor Binaphthyls. Effects of Dynamic Conformer Population on Circular Dichroism , 2010 .

[36]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.