Asymptotic identifiability of nonparametric item response models
暂无分享,去创建一个
[1] J. Ramsay. Kernel smoothing approaches to nonparametric item characteristic curve estimation , 1991 .
[2] F Samejima. Plausibility Functions of Iowa Vocabulary Test Items Estimated by the Simple Sum Procedure of the Conditional P.D.F. Approach. , 1984 .
[3] Charles Lewis,et al. A Nonparametric Approach to the Analysis of Dichotomous Item Responses , 1982 .
[4] Fumiko Samejima. Efficient Methods of Estimating the Operating Characteristics of Item Response Categories and Challenge to a New Model for the Multiple-Choice Item , 1981 .
[5] F. Samejima. Advancement of Latent Trait Theory. , 1988 .
[6] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[7] Klaas Sijtsma,et al. Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .
[8] J. Douglas. Joint consistency of nonparametric item characteristic curve and ability estimation , 1997 .
[9] William Stout,et al. A nonparametric approach for assessing latent trait unidimensionality , 1987 .
[10] V. Mikhailov. On a Refinement of the Central Limit Theorem for Sums of Independent Random Indicators , 1994 .
[11] Klaas Sijtsma,et al. Reliability of test scores in nonparametric item response theory , 1987 .
[12] Norman Verhelst,et al. Maximum Likelihood Estimation in Generalized Rasch Models , 1986 .
[13] B. Junker,et al. A characterization of monotone unidimensional latent variable models , 1997 .
[14] F. Samejima. A New Family of Models for the Multiple-Choice Item. , 1979 .
[15] James O. Ramsay,et al. Binomial Regression with Monotone Splines: A Psychometric Application , 1989 .