Thalamic neuromodulation and its implications for executive networks

The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function.

[1]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[2]  R. Guillery,et al.  Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body , 2000, Neuroscience.

[3]  M. Bickford,et al.  Ultrastructural analysis of projections to the pulvinar nucleus of the cat. II: Pretectum , 2005, The Journal of comparative neurology.

[4]  Simona Temereanca,et al.  Functional Topography of Corticothalamic Feedback Enhances Thalamic Spatial Response Tuning in the Somatosensory Whisker/Barrel System , 2004, Neuron.

[5]  R. Robertson,et al.  Thalamic connections with limbic cortex. II. Corticothalamic projections , 1981, The Journal of comparative neurology.

[6]  A. Parent,et al.  Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei , 1988, Neuroscience.

[7]  J. Robson The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat , 1983, The Journal of comparative neurology.

[8]  Farran Briggs,et al.  Organizing Principles of Cortical Layer 6 , 2009, Front. Neural Circuits.

[9]  S. Sherman,et al.  Differences in response to muscarinic activation between first and higher order thalamic relays. , 2007, Journal of neurophysiology.

[10]  B. Drake Differential Response , 2013 .

[11]  J. Trojanowski,et al.  Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography , 1975, Brain Research.

[12]  X. Liu,et al.  The fine structure of serotonin and tyrosine hydroxylase immunoreactive terminals in the ventral posterior thalamic nucleus of cat and monkey , 2004, Experimental Brain Research.

[13]  Serotonin-immunoreactivity in the monkey lateral geniculate nucleus , 2004, Experimental Brain Research.

[14]  R. Vertes,et al.  Afferent projections to nucleus reuniens of the thalamus , 2004, The Journal of comparative neurology.

[15]  E. Perry,et al.  Thalamic D 2 receptors in dementia with Lewy bodies, Parkinson’s disease, and Parkinson’s disease dementia , 2007 .

[16]  R. Guillery,et al.  Thalamic Relay Functions and Their Role in Corticocortical Communication Generalizations from the Visual System , 2002, Neuron.

[17]  D. Simons,et al.  Motor modulation of afferent somatosensory circuits , 2008, Nature Neuroscience.

[18]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[19]  A. Sillito,et al.  Always returning: feedback and sensory processing in visual cortex and thalamus , 2006, Trends in Neurosciences.

[20]  T. Salt,et al.  Synaptic activation of the group I metabotropic glutamate receptor mGlu1 on the thalamocortical neurons of the rat dorsal Lateral Geniculate Nucleus in vitro , 2000, Neuroscience.

[21]  P S Goldman-Rakic,et al.  Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys , 1988, The Journal of comparative neurology.

[22]  K. Murakami,et al.  The Convergence of Axon Terminals from the Mediodorsal Thalamic Nucleus and Ventral Tegmental Area on Pyramidal Cells in Layer V of the Rat Prelimbic Cortex , 1996, The European journal of neuroscience.

[23]  David A. McCormick,et al.  Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus , 1988, Nature.

[24]  B. Hyland,et al.  Enhanced c-Fos expression in superior colliculus, paraventricular thalamus and septum during learning of cue-reward association , 2010, Neuroscience.

[25]  R. Llinás,et al.  The neuronal basis for consciousness. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  S. Sherman,et al.  Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  A. Griffin,et al.  Transient inactivation of the thalamic nucleus reuniens and rhomboid nucleus produces deficits of a working-memory dependent tactile-visual conditional discrimination task. , 2013, Behavioral neuroscience.

[28]  G. Govindaiah,et al.  Regulation of inhibitory synapses by presynaptic D₄ dopamine receptors in thalamus. , 2010, Journal of neurophysiology.

[29]  M. Higley,et al.  Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior , 2012, Neuron.

[30]  B. Slotnick,et al.  Dual olfactory representation in the rat thalamus: An anatomical and electrophysiological study , 1983, The Journal of comparative neurology.

[31]  M. Bickford,et al.  Synaptic organization of the tectorecipient zone of the rat lateral posterior nucleus , 2009, The Journal of comparative neurology.

[32]  M. Molinari,et al.  Efferent fibers from the motor cortex terminate bilaterally in the thalamus of rats and cats , 2004, Experimental Brain Research.

[33]  K. Deisseroth,et al.  Differential Modulation of Excitatory and Inhibitory Striatal Synaptic Transmission by Histamine , 2011, The Journal of Neuroscience.

[34]  C. Saper,et al.  Efferent connections of the parabrachial nucleus in the rat , 1980, Brain Research.

[35]  S. Sherman,et al.  Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus , 2000, The Journal of comparative neurology.

[36]  B. Boutrel,et al.  Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? , 2012, Front. Behav. Neurosci..

[37]  T. Salt,et al.  Modulation of sensory inhibition in the ventrobasal thalamus via activation of group II metabotropic glutamate receptors by 2R,4R-aminopyrrolidine-2,4-dicarboxylate , 1998, Experimental Brain Research.

[38]  N. Macleod,et al.  Muscarinic action of acetylcholine in the rat ventromedial thalamic nucleus , 2004, Experimental Brain Research.

[39]  J. E CENTRAL CHOLINERGIC PATHWAYS IN THE RAT : AN OVERVIEW BASED ON AN ALTERNATIVE NOMENCLATURE ( Chl-Ch 6 ) , 2002 .

[40]  W Singer,et al.  Cholinergic mechanisms in the reticular control of transmission in the cat lateral geniculate nucleus. , 1988, Journal of neurophysiology.

[41]  C. Purvis,et al.  Discrete thalamic lesions attenuate winter adaptations and increase body weight. , 1997, The American journal of physiology.

[42]  S. Sherman Tonic and burst firing: dual modes of thalamocortical relay , 2001, Trends in Neurosciences.

[43]  A. Parent,et al.  Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey , 1994, The Journal of comparative neurology.

[44]  P Heggelund,et al.  Muscarinic Regulation of Dendritic and Axonal Outputs of Rat Thalamic Interneurons: A New Cellular Mechanism for Uncoupling Distal Dendrites , 2001, The Journal of Neuroscience.

[45]  D. Uhlrich,et al.  Histamine‐immunoreactive neurons and their innervation of visual regions in the cortex, tectum, and thalamus in the primate Macaca mulatta , 1996, The Journal of comparative neurology.

[46]  I. Ilinsky,et al.  Fine structure of the ventral lateral nucleus (VL) of the Macaca mulatta thalamus: Cell types and synaptology , 1991, The Journal of comparative neurology.

[47]  S. Sherman,et al.  Activation requirements for metabotropic glutamate receptors , 2013, Neuroscience Letters.

[48]  M M Mesulam,et al.  Cholinergic innervation of the human thalamus: Dual origin and differential nuclear distribution , 1992, The Journal of comparative neurology.

[49]  H. C. Hughes,et al.  Brainstem afferents to the lateral geniculate nucleus of the cat , 2004, Experimental Brain Research.

[50]  S. Sherman,et al.  Synaptic circuitry of physiologically identified W-cells in the cat's dorsal lateral geniculate nucleus , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  M. Deschenes,et al.  Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat , 1988, Experimental Brain Research.

[52]  E. Perry,et al.  Thalamic D2 receptors in dementia with Lewy bodies, Parkinson's disease, and Parkinson's disease dementia. , 2007, The international journal of neuropsychopharmacology.

[53]  R. Metherate,et al.  Nicotinic control of axon excitability regulates thalamocortical transmission , 2007, Nature Neuroscience.

[54]  D. Fitzpatrick,et al.  Cholinergic projections from the midbrain reticular formation and the parabigeminal nucleus to the lateral geniculate nucleus in the tree shrew , 1988, The Journal of comparative neurology.

[55]  P. Conn,et al.  Metabotropic glutamate receptors: physiology, pharmacology, and disease. , 2010, Annual review of pharmacology and toxicology.

[56]  D. Uhlrich,et al.  Comparison of cholinergic and histaminergic axons in the lateral geniculate complex of the macaque monkey , 1999, The Anatomical record.

[57]  László Négyessy,et al.  Contralateral cortical projection to the mediodorsal thalamic nucleus: origin and synaptic organization in the rat , 1998, Neuroscience.

[58]  A. Sillito,et al.  Looking back: corticothalamic feedback and early visual processing , 2006, Trends in Neurosciences.

[59]  T. Ogawa,et al.  Effects of stimulating the dorsal raphe nucleus of the rat on neuronal activity in the dorsal lateral geniculate nucleus , 1989, Brain Research.

[60]  D. Winder,et al.  Group II and III Metabotropic Glutamate Receptors Suppress Excitatory Synaptic Transmission in the Dorsolateral Bed Nucleus of the Stria Terminalis , 2005, Neuropsychopharmacology.

[61]  J. Maunsell,et al.  The role of attention in visual processing. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  M. Lyons Deep brain stimulation: current and future clinical applications. , 2011, Mayo Clinic proceedings.

[63]  D. B. Bender,et al.  Effect of attentive fixation in macaque thalamus and cortex. , 2001, Journal of neurophysiology.

[64]  D. Uhlrich,et al.  Effects of Activation of the Histaminergic Tuberomammillary Nucleus on Visual Responses of Neurons in the Dorsal Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[65]  H. Groenewegen Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography , 1988, Neuroscience.

[66]  L. Martinez,et al.  Completing the Corticofugal Loop: A Visual Role for the Corticogeniculate Type 1 Metabotropic Glutamate Receptor , 2002, The Journal of Neuroscience.

[67]  Klaus-Peter Lesch,et al.  Serotonin in the Modulation of Neural Plasticity and Networks: Implications for Neurodevelopmental Disorders , 2012, Neuron.

[68]  R. Vertes,et al.  The reuniens and rhomboid nuclei: Neuroanatomy, electrophysiological characteristics and behavioral implications , 2013, Progress in Neurobiology.

[69]  A. Sillito,et al.  Functional alignment of feedback effects from visual cortex to thalamus , 2006, Nature Neuroscience.

[70]  W. Singer,et al.  The brainstem projection to the lateral geniculate nucleus in the cat: Identification of cholinergic and monoaminergic elements , 1987, The Journal of comparative neurology.

[71]  L. Descarries,et al.  Acetylcholine innervation of the adult rat thalamus: Distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei , 2008, The Journal of comparative neurology.

[72]  K. Pribram,et al.  Cholinergic Mechanisms , 1981, Advances in Behavioral Biology.

[73]  Ellen Frank,et al.  Major depressive disorder: new clinical, neurobiological, and treatment perspectives , 2012, The Lancet.

[74]  A. Parent,et al.  Axonal arborization of corticostriatal and corticothalamic fibers arising from prelimbic cortex in the rat. , 1998, Cerebral cortex.

[75]  S. Sherman,et al.  N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[76]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  R. Andrade,et al.  A 5-HT7 Receptor-Mediated Depolarization in the Anterodorsal Thalamus. II. Involvement of the Hyperpolarization-Activated Current Ih , 2001 .

[78]  Y. Dan,et al.  Neuromodulation of Brain States , 2012, Neuron.

[79]  S. Kumar,et al.  Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens , 2014, Brain Structure and Function.

[80]  S. Sherman,et al.  The projection of individual axons from the parabrachial region of the brain stem to the dorsal lateral geniculate nucleus in the cat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  D. Fitzpatrick,et al.  Cholinergic and monoaminergic innervation of the cat's thalamus: Comparison of the lateral geniculate nucleus with other principal sensory nuclei , 1989, The Journal of comparative neurology.

[82]  Larry L. Butcher,et al.  Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain , 1986, Brain Research Bulletin.

[83]  B. K. Hartman,et al.  The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine‐B‐hydroxylase as a marker , 1975, The Journal of comparative neurology.

[84]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[85]  J. Chapin,et al.  Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: A combined modeling and in vivo multi-channel, multi-neuron recording study , 2007, Brain Research.

[86]  J. Zhu,et al.  Cellular mechanisms underlying two muscarinic receptor-mediated depolarizing responses in relay cells of the rat lateral geniculate nucleus , 1998, Neuroscience.

[87]  R. Llinás,et al.  Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[88]  V. Bakshi,et al.  Discrete Forebrain Neuronal Networks Supporting Noradrenergic Regulation of Sensorimotor Gating , 2011, Neuropsychopharmacology.

[89]  David A. McCormick,et al.  Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance , 1986, Nature.

[90]  Farran Briggs,et al.  Corticogeniculate feedback and visual processing in the primate , 2011, The Journal of physiology.

[91]  Menno P. Witter,et al.  Neurotoxic lesions of the thalamic reuniens or mediodorsal nucleus in rats affect non-mnemonic aspects of watermaze learning , 2009, Brain Structure and Function.

[92]  P. Blandina,et al.  Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? , 2012, Front. Syst. Neurosci..

[93]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[94]  Y. Smith,et al.  The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in Parkinson's disease. , 2011, Basal ganglia.

[95]  R. Mair,et al.  Lesions of reuniens and rhomboid thalamic nuclei impair radial maze win‐shift performance , 2010, Hippocampus.

[96]  R C Lin,et al.  Lateralization and functional organization of the locus coeruleus projection to the trigeminal somatosensory pathway in rat , 1997, The Journal of comparative neurology.

[97]  M. Horne,et al.  Projections from the substantia nigra pars reticulata to the motor thalamus of the rat: Single axon reconstructions and immunohistochemical study , 2001, The Journal of comparative neurology.

[98]  F. Clascá,et al.  Unveiling the diversity of thalamocortical neuron subtypes , 2012, The European journal of neuroscience.

[99]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[100]  D. Godwin,et al.  Differential response dynamics of corticothalamic glutamatergic synapses in the lateral geniculate nucleus and thalamic reticular nucleus , 2006, Neuroscience.

[101]  F. Plum,et al.  Behavioural improvements with thalamic stimulation after severe traumatic brain injury , 2008, Nature.

[102]  J. Bourassa,et al.  Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer , 1995, Neuroscience.

[103]  D. Godwin,et al.  Presynaptic inhibition of corticothalamic feedback by metabotropic glutamate receptors. , 2005, Journal of neurophysiology.

[104]  D. McCormick,et al.  Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  H. Roffwarg,et al.  The cholinergic influence upon rat dorsal lateral geniculate nucleus is dependent on state of arousal , 1989, Brain Research.

[106]  L. Swanson,et al.  Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat , 2006, The Journal of comparative neurology.

[107]  C. Varela The gating of neocortical information by modulators. , 2013, Journal of neurophysiology.

[108]  K. Semba,et al.  Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat , 1993, Brain Research.

[109]  R. Spreafico,et al.  Branching projections from mesopontine nuclei to the nucleus reticularis and related thalamic nuclei: A double labelling study in the rat , 1993, The Journal of comparative neurology.

[110]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[111]  Jun Lu,et al.  Reassessment of the structural basis of the ascending arousal system , 2011, The Journal of comparative neurology.

[112]  R. Vertes,et al.  Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat , 2007, Brain Structure and Function.

[113]  K. Rockland Two types of corticopulvinar terminations: Round (type 2) and elongate (type 1) , 1996, The Journal of comparative neurology.

[114]  Ariel Y Deutch,et al.  Distribution of Dopamine D2-Like Receptors in the Human Thalamus: Autoradiographic and PET Studies , 2004, Neuropsychopharmacology.

[115]  T. Salt,et al.  Group II and III metabotropic glutamate receptors and the control of the nucleus reticularis thalami input to rat thalamocortical neurones in vitro , 2003, Neuroscience.

[116]  D. Pow,et al.  Study of projections from the entopeduncular nucleus to the thalamus of the rat , 2000, The Journal of comparative neurology.

[117]  C. Saper,et al.  Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections , 1985, The Journal of comparative neurology.

[118]  E. Akbari,et al.  Effect of reversible inactivation of reuniens nucleus on memory processing in passive avoidance task , 2011, Behavioural Brain Research.

[119]  D. McCormick,et al.  Noradrenergic and serotonergic modulation of a hyperpolarization‐activated cation current in thalamic relay neurones. , 1990, The Journal of physiology.

[120]  A. Parent,et al.  Serotoninergic innervation of the thalamus in the primate: An immunohistochemical study , 1991, The Journal of comparative neurology.

[121]  A. Levey,et al.  Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei , 1988, The Journal of comparative neurology.

[122]  A. Destexhe,et al.  Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells , 1998, The Journal of Neuroscience.

[123]  S. Sherman,et al.  Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices , 2012, The Journal of comparative neurology.

[124]  E. M. Rouiller,et al.  Thalamocortical and the dual pattern of corticothalamic projections of the posterior parietal cortex in macaque monkeys , 2007, Neuroscience.

[125]  J W Gnadt,et al.  Higher-order thalamic relays burst more than first-order relays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[126]  S. Sherman,et al.  Parabrachial innervation of the cat's dorsal lateral geniculate nucleus: an electron microscopic study using the tracer Phaseolus vulgaris leucoagglutinin (PHA-L) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  P. C. Murphy,et al.  Feedback connections to the lateral geniculate nucleus and cortical response properties. , 1999, Science.

[128]  P. C. Murphy,et al.  Brain-stem modulation of the response properties of cells in the cat's perigeniculate nucleus , 1994, Visual Neuroscience.

[129]  A. Gonzalo-Ruiz,et al.  Immunoelectron microscopic study of glutamate inputs from the retrosplenial granular cortex to identified thalamocortical projection neurons in the anterior thalamus of the rat , 1999, Brain Research Bulletin.

[130]  M. Miyata,et al.  Different composition of glutamate receptors in corticothalamic and lemniscal synaptic responses and their roles in the firing responses of ventrobasal thalamic neurons in juvenile mice , 2006, The Journal of physiology.

[131]  A. Grace,et al.  Dopamine Modulates the Responsivity of Mediodorsal Thalamic Cells Recorded In Vitro , 1998, The Journal of Neuroscience.

[132]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[133]  B. Waterhouse,et al.  Topographic organization and neurochemical identity of dorsal raphe neurons that project to the trigeminal somatosensory pathway in the rat , 2001, The Journal of comparative neurology.

[134]  Shane R. Crandall,et al.  Thalamic microcircuits: presynaptic dendrites form two feedforward inhibitory pathways in thalamus. , 2013, Journal of neurophysiology.

[135]  W. Guido,et al.  Optogenetic Stimulation of the Corticothalamic Pathway Affects Relay Cells and GABAergic Neurons Differently in the Mouse Visual Thalamus , 2010, PloS one.

[136]  R. Vertes,et al.  Projections of the median raphe nucleus in the rat , 1999, The Journal of comparative neurology.

[137]  Nicolas J. Kerscher,et al.  D1 and D2 receptor‐mediated dopaminergic modulation of visual responses in cat dorsal lateral geniculate nucleus , 2002, The Journal of physiology.

[138]  F. Licata,et al.  Aminergic control of neuronal firing rate in thalamic motor nuclei of the rat. , 2006, Archives italiennes de biologie.

[139]  S. Sherman,et al.  Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[140]  J. Price,et al.  Ultrastructure and synaptic organization of axon terminals from brainstem structures to the mediodorsal thalamic nucleus of the rat , 1991, The Journal of comparative neurology.

[141]  E. G. Jones,et al.  Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat , 1995, The Journal of comparative neurology.

[142]  B. Wainer,et al.  Ultrastructure of cholinergic synaptic terminals in the thalamic anteroventral, ventroposterior, and dorsal lateral geniculate nuclei of the rat , 1990, The Journal of comparative neurology.

[143]  S. Ueda,et al.  Distributional pattern of serotonin-immunoreactive nerve fibers in the lateral geniculate nucleus of the rat, cat and monkey (Macaca fuscata) , 2004, Cell and Tissue Research.

[144]  L. Chalupa,et al.  The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus , 1985, Neuroscience.

[145]  I. Reichova,et al.  Somatosensory corticothalamic projections: distinguishing drivers from modulators. , 2004, Journal of neurophysiology.

[146]  S. Floresco,et al.  Mesocortical dopamine modulation of executive functions: beyond working memory , 2006, Psychopharmacology.

[147]  F. Roudier,et al.  Immunocytochemical study of serotoninergic and noradrenergic innervation of the ventrobasal complex of the rat thalamus , 1988, Neuroscience Letters.

[148]  D. Melchitzky,et al.  Dopamine innervation of the monkey mediodorsal thalamus: Location of projection neurons and ultrastructural characteristics of axon terminals , 2006, Neuroscience.

[149]  D. Uhlrich,et al.  The histaminergic innervation of the lateral geniculate complex in the cat , 1993, Visual Neuroscience.

[150]  D. James Surmeier,et al.  Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons , 2010, Neuron.

[151]  S. Sherman,et al.  Evidence that cholinergic axons from the parabrachial region of the brainstem are the exclusive source of nitric oxide in the lateral geniculate nucleus of the cat , 1993, The Journal of comparative neurology.

[152]  B. Connors,et al.  VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. , 2007, Cerebral cortex.

[153]  H. Ojima Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. , 1994, Cerebral cortex.

[154]  J. Zhu,et al.  Nicotinic receptor-mediated responses in relay cells and interneurons in the rat lateral geniculate nucleus , 1997, Neuroscience.

[155]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[156]  J. A. Beatty,et al.  Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness , 2009, Neuroscience.

[157]  H. Traurig The Brain Stem Reticular Formation , 2008 .

[158]  M. Ragozzino,et al.  The Parafascicular Thalamic Nucleus Concomitantly Influences Behavioral Flexibility and Dorsomedial Striatal Acetylcholine Output in Rats , 2010, The Journal of Neuroscience.

[159]  R. Vertes,et al.  Pattern of distribution of serotonergic fibers to the thalamus of the rat , 2010, Brain Structure and Function.

[160]  Masahiko Watanabe,et al.  Behavioral/systems/cognitive Selective Neural Pathway Targeting Reveals Key Roles of Thalamostriatal Projection in the Control of Visual Discrimination , 2022 .

[161]  M. Mesulam,et al.  Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6) , 1983, Neuroscience.

[162]  H. Kuypers,et al.  Quantitative em study of projection terminals in the rat's AV thalamic nucleus. Autoradiographic and degeneration techniques compared , 1976, Brain Research.

[163]  I. Gritti,et al.  Gabaergic and cholinergic basal forebrain and preoptic-anterior hypothalamic projections to the mediodorsal nucleus of the thalamus in the cat , 1998, Neuroscience.

[164]  H. Fibiger,et al.  Transmitters contained in the efferents of the habenula , 1980, Brain Research.

[165]  G. Govindaiah,et al.  Excitatory actions of dopamine via D1-like receptors in the rat lateral geniculate nucleus. , 2005, Journal of neurophysiology.

[166]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[167]  Thomas Wichmann,et al.  The thalamostriatal systems: Anatomical and functional organization in normal and parkinsonian states , 2009, Brain Research Bulletin.

[168]  David P. Friedman,et al.  Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei , 2008, Brain Structure and Function.

[169]  G. Stuart,et al.  Action Potential Backpropagation and Somato-dendritic Distribution of Ion Channels in Thalamocortical Neurons , 2000, The Journal of Neuroscience.

[170]  David M Devilbiss,et al.  Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. , 2011, Journal of neurophysiology.

[171]  Y. Shinoda,et al.  Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex , 2001, The Journal of comparative neurology.

[172]  J. Kelly,et al.  Laminar connections of the cat's auditory cortex , 1981, Brain Research.

[173]  A. Gonzalo-Ruiz,et al.  Organization of serotoninergic projections from the raphé nuclei to the anterior thalamic nuclei in the rat: a combined retrograde tracing and 5-HT immunohistochemical study , 1995, Journal of Chemical Neuroanatomy.

[174]  A. Kimura,et al.  Topography of corticothalamic projections from the auditory cortex of the rat , 2004, Neuroscience.

[175]  T. Salt,et al.  Group III metabotropic glutamate receptors control corticothalamic synaptic transmission in the rat thalamus in vitro , 1999, The Journal of physiology.

[176]  CarmenVarela Thalamic neuromodulation and its implications for executive networks , 2014 .

[177]  S. Sherman,et al.  The corticothalamocortical circuit drives higher-order cortex in the mouse , 2009, Nature Neuroscience.

[178]  A. Levey,et al.  Choline acetyltransferase immunoreactivity in the rat thalamus , 1987, The Journal of comparative neurology.

[179]  D. McCormick,et al.  Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. , 1988, Journal of neurophysiology.

[180]  Yan-Gang Sun,et al.  Receptor saturation controls short-term synaptic plasticity at corticothalamic synapses. , 2011, Journal of neurophysiology.

[181]  O. Phillipson,et al.  Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport. II. The midline nuclei , 1988, Brain Research Bulletin.

[182]  R. Vertes A PHA‐L analysis of ascending projections of the dorsal raphe nucleus in the rat , 1991, The Journal of comparative neurology.

[183]  S. Foote,et al.  Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys , 1986, The Journal of comparative neurology.

[184]  C. Cavada,et al.  Reduced noradrenaline, but not dopamine and serotonin in motor thalamus of the MPTP primate: relation to severity of Parkinsonism , 2013, Journal of neurochemistry.

[185]  A. Parent,et al.  Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys , 1988, The Journal of comparative neurology.

[186]  S. Sherman,et al.  Ultrastructural Localization Suggests that Retinal and Cortical Inputs Access Different Metabotropic Glutamate Receptors in the Lateral Geniculate Nucleus , 1996, The Journal of Neuroscience.

[187]  A. Graybiel,et al.  Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. , 2001, Journal of neurophysiology.

[188]  D. Paré,et al.  Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. , 1991, Journal of neurophysiology.

[189]  Mikhail A Lebedev,et al.  Simultaneous Top-down Modulation of the Primary Somatosensory Cortex and Thalamic Nuclei during Active Tactile Discrimination , 2013, The Journal of Neuroscience.

[190]  Jian-Sheng Lin,et al.  Neuronal Activity of Histaminergic Tuberomammillary Neurons During Wake–Sleep States in the Mouse , 2006, The Journal of Neuroscience.

[191]  B. Waterhouse,et al.  Origin, distribution, and morphology of galaninergic fibers in the rodent trigeminal system , 1999, The Journal of comparative neurology.

[192]  R. Ranney Mize,et al.  The innervation density of serotonergic (5-HT) fibers varies in different subdivisions of the cat lateral geniculate nucleus complex , 1987, Neuroscience Letters.

[193]  B. Hu,et al.  Distinct forms of cholinergic modulation in parallel thalamic sensory pathways , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[194]  Jean-Christophe Cassel,et al.  The Ventral Midline Thalamus Contributes to Strategy Shifting in a Memory Task Requiring Both Prefrontal Cortical and Hippocampal Functions , 2013, The Journal of Neuroscience.

[195]  H. Fibiger,et al.  Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat , 1990, Neuroscience.

[196]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[197]  Sheila V. Kusnoor,et al.  The effects of nigrostriatal dopamine depletion on the thalamic parafascicular nucleus , 2012, Brain Research.

[198]  M. Descheˆnes,et al.  The effects of brainstem peribrachial stimulation on perigeniculate neurons: The blockage of spindle waves , 1989, Neuroscience.

[199]  A. Sillito,et al.  The cholinergic influence on the function of the cat dorsal lateral geniculate nucleus (dLGN) , 1983, Brain Research.

[200]  R. Andrade,et al.  A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. I. Pharmacological characterization. , 2001, The Journal of pharmacology and experimental therapeutics.

[201]  A. Parent,et al.  Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey , 1988, Neuroscience.

[202]  R. F. Bolton,et al.  Collateral axons of cholinergic pontine neurones projecting to midline, mediodorsal and parafascicular thalamic nuclei in the rat , 1993, Journal of Chemical Neuroanatomy.

[203]  Lesions of the thalamic reuniens cause impulsive but not compulsive responses , 2012, Brain Structure and Function.

[204]  David A. McCormick,et al.  Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[205]  J. Monti,et al.  Serotonin control of sleep-wake behavior. , 2011, Sleep medicine reviews.

[206]  B. Waterhouse,et al.  Differential expression of nitric oxide in serotonergic projection neurons: Neurochemical identification of dorsal raphe inputs to rodent trigeminal somatosensory targets , 2003, The Journal of comparative neurology.

[207]  P. Guyenet,et al.  Afferent and efferent connections of the A5 noradrenergic cell group in the rat , 1987, The Journal of comparative neurology.

[208]  M. Mühlethaler,et al.  Selective Action of Orexin (Hypocretin) on Nonspecific Thalamocortical Projection Neurons , 2002, The Journal of Neuroscience.

[209]  A. C. Cuello,et al.  Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry , 1985, Brain Research.

[210]  J. Brioni,et al.  Localization of histamine H4 receptors in the central nervous system of human and rat , 2009, Brain Research.

[211]  S. Benoit,et al.  Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat , 2012, Neuroscience.

[212]  R. Andrade,et al.  A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current I(h). , 2001, The Journal of pharmacology and experimental therapeutics.

[213]  D. McCormick,et al.  Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[214]  Jake T C Clements,et al.  Differential Feedback Modulation of Center and Surround Mechanisms in Parvocellular Cells in the Visual Thalamus , 2012, The Journal of Neuroscience.

[215]  P. C. Murphy,et al.  Comparison of the Laminar Distribution of Input from Areas 17 and 18 of the Visual Cortex to the Lateral Geniculate Nucleus of the Cat , 2000, The Journal of Neuroscience.

[216]  P. Shiromani,et al.  Pontine cholinergic neurons simultaneously innervate two thalamic targets , 1990, Brain Research.

[217]  A. Kelley,et al.  A proposed hypothalamic–thalamic–striatal axis for the integration of energy balance, arousal, and food reward , 2005, The Journal of comparative neurology.

[218]  D. Raczkowski,et al.  Sublaminar organization within layer VI of the striate cortex in Galago , 1990, The Journal of comparative neurology.

[219]  C. Saper Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus , 1984, The Journal of comparative neurology.

[220]  E. Azmitia,et al.  An immunocytochemical study of the serotonergic innervation of the thalamus of the rat , 1984, The Journal of comparative neurology.

[221]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[222]  W. C. Hall,et al.  Cholinergic projections to the visual thalamus and superior colliculus , 1999, Brain Research.

[223]  S. Sherman,et al.  Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminals , 1997, The Journal of comparative neurology.

[224]  Takeshi Sakurai,et al.  The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness , 2007, Nature Reviews Neuroscience.

[225]  M. Castro-Alamancos,et al.  The state of somatosensory cortex during neuromodulation. , 2012, Journal of neurophysiology.

[226]  J Rinzel,et al.  Dynamics of Low-Threshold Spike Activation in Relay Neurons of the Cat Lateral Geniculate Nucleus , 2001, The Journal of Neuroscience.

[227]  A. Levey,et al.  The origins of cholinergic and other subcortical afferents to the thalamus in the rat , 1987, The Journal of comparative neurology.

[228]  Wei Xu,et al.  A Neural Circuit for Memory Specificity and Generalization , 2013, Science.

[229]  Beatriz Rico,et al.  The Primate Thalamus Is a Key Target for Brain Dopamine , 2005, The Journal of Neuroscience.

[230]  R. Stickgold,et al.  The neuropsychology of REM sleep dreaming. , 1998, Neuroreport.

[231]  S. Floresco,et al.  Cerebral Cortex doi:10.1093/cercor/bhl073 Thalamic--Prefrontal Cortical--Ventral Striatal Circuitry Mediates Dissociable Components of Strategy Set Shifting , 2006 .

[232]  L. Krubitzer,et al.  Cortical evolution in mammals: The bane and beauty of phenotypic variability , 2012, Proceedings of the National Academy of Sciences.

[233]  S. Sherman,et al.  Fewer driver synapses in higher order than in first order thalamic relays , 2007, Neuroscience.

[234]  J. Lisman Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? , 2012, Current Opinion in Neurobiology.

[235]  D. McCormick,et al.  Actions of acetylcholine in the guinea‐pig and cat medial and lateral geniculate nuclei, in vitro. , 1987, The Journal of physiology.

[236]  D. McCormick,et al.  Neuromodulatory role of serotonin in the ferret thalamus. , 2002, Journal of neurophysiology.

[237]  S. Sesack,et al.  Projections from the paraventricular nucleus of the thalamus to the rat prefrontal cortex and nucleus accumbens shell: Ultrastructural characteristics and spatial relationships with dopamine afferents , 2003, The Journal of comparative neurology.

[238]  S Murray Sherman,et al.  Corticothalamic Projections from the Rat Primary Somatosensory Cortex , 2003, The Journal of Neuroscience.

[239]  C. Cavada,et al.  Dopamine Innervation in the Thalamus: Monkey versus Rat , 2008, Cerebral cortex.

[240]  P. Vincent,et al.  Serotonin suppresses the slow afterhyperpolarization in rat intralaminar and midline thalamic neurones by activating 5‐HT7 receptors , 2002, The Journal of physiology.

[241]  L. Swanson,et al.  The structural organization of connections between hypothalamus and cerebral cortex 1 Published on the World Wide Web on 2 June 1997. 1 , 1997, Brain Research Reviews.

[242]  D. Albrecht,et al.  Effects of dopamine on neurons of the lateral geniculate nucleus: An iontophoretic study , 1996, Synapse.

[243]  S. Sherman,et al.  Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. , 2010, Cerebral cortex.

[244]  S. Sherman,et al.  Differences in response to serotonergic activation between first and higher order thalamic nuclei. , 2009, Cerebral cortex.

[245]  H. Davidowa,et al.  Histamine reduces firing and bursting of anterior and intralaminar thalamic neurons and activates striatal cells in anesthetized rats , 2001, Behavioural Brain Research.

[246]  David A. McCormick,et al.  Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current , 1989, Nature.

[247]  Nicolas J. Kerscher,et al.  Changes of contrast gain in cat dorsal lateral geniculate nucleus by dopamine receptor agonists , 2001, Neuroreport.

[248]  Kevin D Alloway,et al.  Contralateral corticothalamic projections from MI whisker cortex: Potential route for modulating hemispheric interactions , 2008, The Journal of comparative neurology.