Bidentate guanidine ligands with ethylene spacer in copper-dioxygen chemistry: Structural characterization of bis(μ-hydroxo) dicopper complexes

Abstract The syntheses of the aliphatic bidentate guanidine–amine-hybrid ligands DMEGdmae (L1), TMGdmae (L2), TMGdeae (L3) and DPipGdmae (L4) as well as the reaction of their Cu(I) complexes with molecular oxygen (monitored by UV–Vis spectroscopy) are reported. The molecular structures of 10 bis(μ-hydroxo) dicopper complexes based on these ligands are described. The solid state structures of [Cu2(μ-OH)2(DMEGdmae)2]X2 (X− = I− (1), CF3SO3− (2), SbF6− (3), PF6− (4)), [Cu2(μ-OH)2(TMGdmae)2]X2 (X− = I− (5), CF3SO3− (6)), [Cu2(μ-OH)2(TMGdeae)2]Cu2I4 (7) and [Cu2(μ-OH)2(DPipGdmae)2]X2 (X− = CF3SO3− (8), SbF6− (9), PF6− (10)) show a square-planar distorted coordination of the copper(II) ion. The bis(μ-hydroxo) dicopper complex 1 exhibits a Cu···Cu distance of 2.860(1) A, which is one of the smallest observed for hydroxo-bridged copper compounds so far. The influence of the anion on the structure of the bis(μ-hydroxo) dicopper(II) unit is analyzed for the reported complexes and a literature overview with emphasis on the structural characteristics of the Cu2O2 moiety of bis(μ-hydroxo) dicopper(II) and bis(μ-oxo) dicopper(III) is given.

[1]  Sonja Herres-Pawlis,et al.  Phenolate hydroxylation in a bis(mu-oxo)dicopper(III) complex: lessons from the guanidine/amine series. , 2009, Journal of the American Chemical Society.

[2]  Y. Moro-oka,et al.  Copper-Dioxygen Complexes. Inorganic and Bioinorganic Perspectives , 1994 .

[3]  Jason A. Halfen,et al.  Reversible Cleavage and Formation of the Dioxygen O-O Bond Within a Dicopper Complex , 1996, Science.

[4]  J. R. Wasson,et al.  The crystal structure of di‐μ‐hydroxo‐bis(N,N,N',N'‐tetramethylethylenediamine)dicopper(II) bromide , 1970 .

[5]  U. Flörke,et al.  Hydroxylation of a methyl group : synthesis of [Cu2(btmmo)2I]+ and of [Cu2(btmmO)2]2+ containing the novel ligand {bis(trimethylmethoxy)guanidino} propane (btmmO) by copper-assisted oxygen activation , 2005 .

[6]  Edward I. Solomon,et al.  Kupferproteine: Koordination und Aktivierung von Sauerstoff und seine Reduktion zu Wasser , 2001 .

[7]  William B. Tolman,et al.  Copper-Dioxygen and Copper-Oxo Species Relevant to Copper Oxygenases and Oxidases , 2000 .

[8]  K. Hodgson,et al.  mu-eta2:eta2-peroxodicopper(II) complex with a secondary diamine ligand: a functional model of tyrosinase. , 2006, Journal of the American Chemical Society.

[9]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[10]  Mahmood Toofan,et al.  Crystal and molecular structure of di-µ-hydroxo-bis[bipyridylcopper(II)] diperchlorate , 1976 .

[11]  K. Karlin,et al.  Aryl hydroxylation from a mononuclear copper-hydroperoxo species. , 2007, Journal of the American Chemical Society.

[12]  T. D. Stack,et al.  Complexity with simplicity: a steric continuum of chelating diamines with copper(I) and dioxygen , 2003 .

[13]  Xavi Ribas,et al.  Tyrosinase-like reactivity in a Cu(III)2(mu-O)2 species. , 2008, Chemistry.

[14]  S. Hirota,et al.  Tetrahedral Distortion in Copper(II) Complexes of (−)-Sparteine and Its Effect on the Oxygen Adduct Formation , 2000 .

[15]  S. Fukuzumi,et al.  Fine-tuning of copper(I)-dioxygen reactivity by 2-(2-pyridyl)ethylamine bidentate ligands. , 2002, Journal of the American Chemical Society.

[16]  Michael Vance,et al.  Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism , 2005, Science.

[17]  F. Lloret,et al.  Synthesis, crystal structure and magnetic properties of di-µ-hydroxo-bis[(2,2′-bipyridine)(trifluoromethanesulfonato-O)-copper(II)] , 1992 .

[18]  S. Schindler Reactivity of Copper(I) Complexes Towards Dioxygen , 2000 .

[19]  K. Karlin,et al.  Ligand Influences in Copper-Dioxygen Complex-Formation and Substrate Oxidations , 2006 .

[20]  T. Maier,et al.  Orthoamide. XL: Herstellung von 1,1,2,3,3-pentasubstituierten und 1,1,2,2,3,3-hexasubstituierten Guanidiniumsalzen sowie von 1,1,2,3,3-Pentaalkylguanidinen , 1984 .

[21]  P. Holland,et al.  Dioxygen activation by copper sites: relative stability and reactivity of (μ-η2:η2-peroxo)- and bis(μ-oxo)dicopper cores , 1999 .

[22]  T. D. Stack,et al.  Structure and spectroscopy of copper-dioxygen complexes. , 2004, Chemical reviews.

[23]  K. Karlin,et al.  Tuning copper-dioxygen reactivity and exogenous substrate oxidations via alterations in ligand electronics. , 2003, Journal of the American Chemical Society.

[24]  Anindita De,et al.  Modeling tyrosinase activity. Effect of ligand topology on aromatic ring hydroxylation: an overview. , 2008, Journal of inorganic biochemistry.

[25]  K. Karlin,et al.  Solvent Effects on the Conversion of Dicopper(II) μ-η2:η2-Peroxo to Bis-μ-oxo Dicopper(III) Complexes: Direct Probing of the Solvent Interaction , 2004 .

[26]  S. Itoh,et al.  Structure and O2-reactivity of copper(I) complexes supported by pyridylalkylamine ligands. , 2006, Dalton transactions.

[27]  Sonja Herres-Pawlis,et al.  Tuning of Copper(I)–Dioxygen Reactivity by Bis(guanidine) Ligands , 2005 .

[28]  T. D. Stack,et al.  Biomimetic modeling of copper oxidase reactivity. , 2000, Current opinion in chemical biology.

[29]  W. Tolman MAKING AND BREAKING THE DIOXYGEN 0-0 BOND : NEW INSIGHTS FROM STUDIES OF SYNTHETIC COPPER COMPLEXES , 1997 .

[30]  H. Masuda,et al.  Syntheses, characterization, and dioxygen reactivities of Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives: a Cu(III)2O2 intermediate exhibiting higher C-H activation. , 2007, Inorganic chemistry.

[31]  K. Karlin,et al.  Bioinorganic Chemistry of Copper , 1993, Springer Netherlands.

[32]  M. Kozlowski,et al.  Copper(II) Complexes of Novel 1,5-Diaza-cis-decalin Diamine Ligands: An Investigation of Structure and Reactivity , 2002 .

[33]  Z. Maksić,et al.  1,8-bis(dimethylethyleneguanidino)naphthalene: tailoring the basicity of bisguanidine "proton sponges" by experiment and theory. , 2003, The Journal of organic chemistry.

[34]  H. Cohen,et al.  Syntheses, Structures and Properties of Copper(I) and Copper(II) Complexes of the Ligand N,N′-Bis[2′-(dimethylamino)ethyl]-N,N′-dimethylethane1,2-diamine (Me6trien) , 2000 .

[35]  William B Tolman,et al.  Reactivity of dioxygen-copper systems. , 2004, Chemical reviews.

[36]  T. D. Stack,et al.  A tris(mu-hydroxy)tricopper(II) complex as a model of the native intermediate in laccase and its relationship to a binuclear analogue. , 2005, Inorganic chemistry.

[37]  P. Hitchcock,et al.  Copper(II) adducts with N,N,N′,N′-tetramethylethane-1,2-diamine and attempts to prepare trinuclear derivatives , 2001 .

[38]  G. Gelbard,et al.  Gas‐phase structural (internal) effects in strong organic nitrogen bases , 2001 .

[39]  K. Karlin,et al.  Substrate oxidation by copper-dioxygen adducts: mechanistic considerations. , 2005, Journal of the American Chemical Society.

[40]  Jhumpa Mukherjee,et al.  Reaction with dioxygen of a Cu(I) complex of 1-benzyl-[3-(2'-pyridyl)]pyrazole triggers ethyl acetate hydrolysis: acetato-/pyrazolato-, dihydroxo- and diacetato-bridged Cu(II) complexes. , 2006, Dalton transactions.

[41]  Matthias Tamm,et al.  Synthesis and reactivity of copper(I) complexes with an ethylene-bridged bis(imidazolin-2-imine) ligand. , 2008, Dalton transactions.

[42]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[43]  S. Fukuzumi,et al.  Monooxygenase activity of type 3 copper proteins. , 2007, Accounts of chemical research.

[44]  T. D. Stack,et al.  Differential Reactivity between Interconvertible Side-On Peroxo and Bis-μ-oxodicopper Isomers Using Peralkylated Diamine Ligands , 2000 .