The inverse kinematics problem of spatial 4P3R robot manipulator by the homotopy continuation method with an adjustable auxiliary homotopy function

Abstract In this paper, the concept of an adjustable auxiliary homotopy function for the homotopy continuation method is presented. By means of adjusting the auxiliary function, we can solve non-linear equations and guarantee the solutions exactly without divergence rather than the traditional numerical methods such as the Newton–Raphson method and so on.

[1]  Ji-Huan He A coupling method of a homotopy technique and a perturbation technique for non-linear problems , 2000 .

[2]  J. Seader,et al.  Global homotopy continuation procedures for seeking all roots of a nonlinear equation , 2001 .

[3]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[4]  Rami G. Melhem,et al.  A comparison of methods for determining turning points of nonlinear equations , 1982, Computing.

[5]  Ji-Huan He,et al.  Homotopy perturbation method: a new nonlinear analytical technique , 2003, Appl. Math. Comput..

[6]  Tzong-Mou Wu,et al.  A study of convergence on the Newton-homotopy continuation method , 2005, Appl. Math. Comput..

[7]  Werner C. Rheinboldt,et al.  A locally parameterized continuation process , 1983, TOMS.

[8]  Constantinos Mavroidis,et al.  Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation , 2002 .

[9]  Neil L. Book,et al.  A robust path tracking algorithm for homotopy continuation , 1996 .

[10]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .

[11]  Charles W. Wampler,et al.  Solving a Planar Four-Bar Design Problem Using Continuation , 1990 .

[12]  W. M. Häußler,et al.  Variable Schrittweitensteuerungen für die Homotopiemethode bei adäquaten nichtlinearen Ausgleichsproblemen , 1982, Computing.

[13]  Alexander P. Morgan,et al.  A Method for Computing All Solutions to Systems of Polynomials Equations , 1983, TOMS.

[14]  M. Kojima,et al.  Computing all nonsingular solutions of cyclic- n polynomial using polyhedral homotopy continuation methods , 2003 .

[15]  Tzong-Mou Wu,et al.  Searching All the Roots of Inverse Kinematics Problem of Robot by Homotopy Continuation Method , 2005 .

[16]  Ji-Huan He Homotopy perturbation technique , 1999 .

[17]  D. Leder Automatische Schrittweitensteuerung bei global konvergenten Einbettungsmethoden , 1974 .

[18]  R. Kellogg,et al.  Pathways to solutions, fixed points, and equilibria , 1983 .

[19]  Hichem Sellami A homotopy continuation method for solving normal equations , 1998 .

[20]  Werner C. Rheinboldt,et al.  Solution Fields of Nonlinear Equations and Continuation Methods , 1980 .

[21]  W. Rheinboldt,et al.  On steplength algorithms for a class of continuation methods siam j numer anal , 1981 .