Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization

,

[1]  J. Paisley,et al.  An Unsupervised Machine‐Learning Approach to Understanding Seismicity at an Alpine Glacier , 2022, Journal of Geophysical Research: Earth Surface.

[2]  A. Reading,et al.  An ObsPy Library for Event Detection and Seismic Attribute Calculation: Preparing Waveforms for Automated Analysis , 2021, Journal of Open Research Software.

[3]  Peter Gerstoft,et al.  Unsupervised Deep Clustering of Seismic Data: Monitoring the Ross Ice Shelf, Antarctica , 2021 .

[4]  A. Smith,et al.  Breaking the Ice: Identifying Hydraulically Forced Crevassing , 2020, Geophysical Research Letters.

[5]  Richard Baraniuk,et al.  Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning , 2020, Nature Communications.

[6]  F. Vernon,et al.  Identifying Different Classes of Seismic Noise Signals Using Unsupervised Learning , 2020, Geophysical Research Letters.

[7]  A. Reading,et al.  A Grid for Multidimensional and Multivariate Spatial Representation and Data Processing , 2019, Journal of Open Research Software.

[8]  M. Hell,et al.  Identifying Ocean Swell Generation Events from Ross Ice Shelf Seismic Data , 2019, Journal of Atmospheric and Oceanic Technology.

[9]  J. Malet,et al.  Exploration of continuous seismic recordings with a machine learning approach to document 20 yr of landslide activity in Alaska , 2019, Geophysical Journal International.

[10]  S. Mostafa Mousavi,et al.  STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI , 2019, IEEE Access.

[11]  Evgeny A. Podolskiy,et al.  Tide-modulated ice motion and seismicity of a floating glacier tongue in East Antarctica , 2019, Annals of Glaciology.

[12]  G. Barruol,et al.  Thermally induced icequakes detected on blue ice areas of the East Antarctic ice sheet , 2019, Annals of Glaciology.

[13]  P. Gerstoft,et al.  Ross Ice Shelf Icequakes Associated With Ocean Gravity Wave Activity , 2019, Geophysical Research Letters.

[14]  K. Fujita,et al.  Viscoelastic Modeling of Nocturnal Thermal Fracturing in a Himalayan Debris‐Covered Glacier , 2019, Journal of Geophysical Research: Earth Surface.

[15]  A. Cannata,et al.  Exploring the link between microseism and sea ice in Antarctica by using machine learning , 2019, Scientific Reports.

[16]  Ting Chen,et al.  Preface to the Focus Section on Machine Learning in Seismology , 2019, Seismological Research Letters.

[17]  E. Okal,et al.  Diurnal seismicity cycle linked to subsurface melting on an ice shelf , 2018, Annals of Glaciology.

[18]  R. E. Anthony,et al.  Near‐Surface Environmentally Forced Changes in the Ross Ice Shelf Observed With Ambient Seismic Noise , 2018, Geophysical Research Letters.

[19]  M. Kanao A New Trend in Cryoseismology: A Proxy for Detecting the Polar Surface Environment , 2018, Polar Seismology - Advances and Impact.

[20]  Gregory C. Beroza,et al.  Earthquake Fingerprints: Extracting Waveform Features for Similarity-Based Earthquake Detection , 2018, Pure and Applied Geophysics.

[21]  K. Fujita,et al.  Nocturnal Thermal Fracturing of a Himalayan Debris‐Covered Glacier Revealed by Ambient Seismic Noise , 2018, Geophysical Research Letters.

[22]  Susan Y. Schwartz,et al.  Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion , 2018 .

[23]  C. Hulbe,et al.  Ice Stream Slowdown Will Drive Long‐Term Thinning of the Ross Ice Shelf, With or Without Ocean Warming , 2018 .

[24]  Andrew Reynen,et al.  Supervised machine learning on a network scale: application to seismic event classification and detection , 2017 .

[25]  J. Schweizer,et al.  Automatic detection of snow avalanches in continuous seismic data using hidden Markov models , 2017 .

[26]  Peter Gerstoft,et al.  Tsunami and infragravity waves impacting Antarctic ice shelves , 2017 .

[27]  William Agudelo,et al.  Seismic attribute selection and clustering to detect and classify surface waves in multicomponent seismic data by using k-means algorithm , 2017 .

[28]  Jean-Philippe Malet,et al.  Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier , 2017 .

[29]  Evgeny A. Podolskiy,et al.  Cryoseismology , 2016 .

[30]  S. Mostafa Mousavi,et al.  Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression , 2016 .

[31]  Peter T. Fretwell,et al.  An automated methodology for differentiating rock from snow, clouds and seain Antarctica from Landsat 8 imagery: a new rock outcrop map and areaestimation for the entire Antarctic continent , 2016 .

[32]  Evgeny A. Podolskiy,et al.  Tide‐modulated ice flow variations drive seismicity near the calving front of Bowdoin Glacier, Greenland , 2016 .

[33]  P. Gerstoft,et al.  Longitudinal Seismic Waves in the Ross Ice Shelf Excited by Whillans Ice Stream Stick-Slip Events , 2016 .

[34]  Harihar Rajaram,et al.  Glacier crevasses: Observations, models, and mass balance implications , 2016 .

[35]  Clara E Yoon,et al.  Earthquake detection through computationally efficient similarity search , 2015, Science Advances.

[36]  D. Wiens,et al.  A previously unreported type of seismic source in the firn layer of the East Antarctic Ice Sheet , 2015 .

[37]  Sahana D. Gowda,et al.  A novel validity index with dynamic cut-off for determining true clusters , 2015, Pattern Recognit..

[38]  Peter Gerstoft,et al.  Ross ice shelf vibrations , 2015 .

[39]  Matthias Ohrnberger,et al.  Pattern of cryospheric seismic events observed at Ekström Ice Shelf, Antarctica , 2015 .

[40]  Lion Krischer,et al.  ObsPy: a bridge for seismology into the scientific Python ecosystem , 2015 .

[41]  P. Comon,et al.  Intermediate‐depth icequakes and harmonic tremor in an Alpine glacier (Glacier d'Argentière, France): Evidence for hydraulic fracturing? , 2015 .

[42]  Pierre Comon,et al.  Basal icequakes recorded beneath an Alpine glacier (Glacier d'Argentière, Mont Blanc, France): Evidence for stick‐slip motion? , 2015 .

[43]  M. Lüthi,et al.  Sustained seismic tremors and icequakes detected in the ablation zone of the Greenland ice sheet , 2014 .

[44]  Diane Rivet,et al.  Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano , 2014 .

[45]  Matthias Ohrnberger,et al.  A Machine Learning Approach for Improving the Detection Capabilities at 3C Seismic Stations , 2014, Pure and Applied Geophysics.

[46]  Sridhar Anandakrishnan,et al.  Seismic and geodetic evidence for grounding‐line control of Whillans Ice Stream stick‐slip events , 2014 .

[47]  Matt A. King,et al.  Variable deceleration of Whillans Ice Stream, West Antarctica , 2014 .

[48]  Ismail Mohamad,et al.  Standardization and Its Effects on K-Means Clustering Algorithm , 2013 .

[49]  B. Scheuchl,et al.  Ice-Shelf Melting Around Antarctica , 2013, Science.

[50]  Matthew J. Cracknell,et al.  The upside of uncertainty: Identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines , 2013 .

[51]  R. Alley,et al.  Nucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica , 2013 .

[52]  B. Hallet,et al.  Seismic multiplet response triggered by melt at Blood Falls, Taylor Glacier, Antarctica , 2012 .

[53]  Martin J. Siegert,et al.  A fourth inventory of Antarctic subglacial lakes , 2012, Antarctic Science.

[54]  C. Hammer,et al.  A Seismic‐Event Spotting System for Volcano Fast‐Response Systems , 2012 .

[55]  C. Nuth,et al.  Autonomous detection of calving-related seismicity at Kronebreen, Svalbard , 2012 .

[56]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[57]  R. Alley,et al.  Dynamics of stick-slip motion, Whillans Ice Stream, Antarctica , 2011 .

[58]  Lion Krischer,et al.  ObsPy – What can it do for data centers and observatories? , 2011 .

[59]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[60]  Frank Scherbaum,et al.  Unsupervised pattern recognition in continuous seismic wavefield records using Self-Organizing Maps , 2010 .

[61]  Lion Krischer,et al.  ObsPy: A Python Toolbox for Seismology , 2010 .

[62]  M. Nettles,et al.  Glacial Earthquakes in Greenland and Antarctica , 2010 .

[63]  E. Okal,et al.  Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves , 2009, Journal of Glaciology.

[64]  Reza Bosagh Zadeh,et al.  A Uniqueness Theorem for Clustering , 2009, UAI.

[65]  R. Alley,et al.  Seismic observations of transient subglacial water‐flow beneath MacAyeal Ice Stream, West Antarctica , 2009 .

[66]  Stephen R. Marsland,et al.  Machine Learning - An Algorithmic Perspective , 2009, Chapman and Hall / CRC machine learning and pattern recognition series.

[67]  Matt A. King,et al.  Basal mechanics of ice streams: Insights from the stick‐slip motion of Whillans Ice Stream, West Antarctica , 2009 .

[68]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[69]  E. Okal,et al.  Seismic and hydroacoustic tremor generated by colliding icebergs , 2008 .

[70]  Sridhar Anandakrishnan,et al.  Simultaneous teleseismic and geodetic observations of the stick–slip motion of an Antarctic ice stream , 2008, Nature.

[71]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[72]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[73]  Marina Meila,et al.  The uniqueness of a good optimum for K-means , 2006, ICML.

[74]  H. Langer,et al.  Automatic classification and a-posteriori analysis of seismic event identification at Soufriere Hills volcano, Montserrat , 2006 .

[75]  Csaba Legány,et al.  Cluster validity measurement techniques , 2006 .

[76]  Fazel Famili,et al.  Evaluation and optimization of clustering in gene expression data analysis , 2004, Bioinform..

[77]  G. Beroza,et al.  Reconciling Teleseismic and Regional Estimates of Seismic Energy , 2003 .

[78]  Stephen F. Price,et al.  Changes in west Antarctic ice stream velocities: Observation and analysis , 2002 .

[79]  Robert M. Haralick,et al.  Feature normalization and likelihood-based similarity measures for image retrieval , 2001, Pattern Recognit. Lett..

[80]  Hermann Engelhardt,et al.  Basal mechanics of Ice Stream B, west Antarctica: 1. Till mechanics , 2000 .

[81]  Andrew G. Fountain,et al.  Water flow through temperate glaciers , 1998 .

[82]  A. Hardy On the number of clusters , 1996 .

[83]  A. Qamar,et al.  Calving icebergs: A source of low-frequency seismic signals from Columbia Glacier, Alaska , 1988 .

[84]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[85]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[86]  A. Reading,et al.  Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets - Part A: Event detection for cryoseismology , 2023 .

[87]  Yohei Nishitsuji,et al.  Unsupervised Learning Used in Automatic Detection and Classification of Ambient‐Noise Recordings from a Large‐N Array , 2019, Seismological Research Letters.

[88]  Chunyan Yu,et al.  Clustering stability-based Evolutionary K-Means , 2019, Soft Comput..

[89]  R. Aster,et al.  Glacial seismology , 2017, Reports on progress in physics. Physical Society.

[90]  Sridhar Anandakrishnan,et al.  The Seismic Noise Environment of Antarctica , 2015 .

[91]  R. Alley,et al.  Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream, Antarctica , 2014 .

[92]  Aloysius George,et al.  Efficient high dimension data clustering using constraint-partitioning k-means algorithm , 2013, Int. Arab J. Inf. Technol..

[93]  D. Graham,et al.  The search for seismic signatures of movement at the glacier bed in a polythermal valley glacier , 2013, Annals of Glaciology.

[94]  M. Lüthi,et al.  Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland , 2012, Annals of Glaciology.

[95]  Colin M. Sayers,et al.  Characterization of Microseismic Data In Gas Shales Using the Radius of Gyration Tensor , 2010 .

[96]  Adrian Luckman,et al.  Englacial drainage systems formed by hydrologically driven crevasse propagation , 2009 .

[97]  Martin Funk,et al.  Basal icequakes during changing subglacial water pressures beneath Gornergletscher, Switzerland , 2008, Journal of Glaciology.

[98]  D. Marsan,et al.  Microseismic activity within a serac zone in an alpine glacier (Glacier d’Argentière, Mont Blanc, France) , 2008, Journal of Glaciology.

[99]  R. Bindschadler,et al.  Changes in the ice plain of Whillans Ice Stream, West Antarctica , 2005 .

[100]  Benno Stein,et al.  On Cluster Validity and the Information Need of Users , 2003 .

[101]  S. Tulaczyk,et al.  Numerical investigations of the slow-down of Whillans Ice Stream, West Antarctica: is it shutting down like Ice Stream C? , 2003, Annals of Glaciology.

[102]  D. Vaughan,et al.  Subsurface crevasse formation in glaciers and ice sheets , 2003 .

[103]  Richard Coleman,et al.  A new tide model for the Antarctic ice shelves and seas , 2002, Annals of Glaciology.

[104]  R. Bindschadler,et al.  Post-stagnation behavior in the upstream regions of Ice Stream C, West Antarctica , 2001, Journal of Glaciology.

[105]  R. Bindschadler,et al.  The detailed net mass balance of the Ice plain on Ice Stream B, Antarctica: a geographic information system approach , 1993, Journal of Glaciology.

[106]  Charles R. Bentley,et al.  Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses , 1993, Journal of Glaciology.

[107]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[108]  西尾 文彦 Studies on thermally induced fractures and snowquakes of polar snow covers , 1981 .

[109]  E. Berg,et al.  Seismic Evidence for Glacier Motion , 1973, Journal of Glaciology.

[110]  M. Mellor The Antarctic ice sheet , 1961 .