Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid

The compressive behaviors of steel cells enhanced by a nanoporous silica functionalized liquid are investigated. As the empty space in the ductile cell is filled by an aqueous suspension of hydrophobic nanoporous silica gel, the work done by the compressive load along the axial direction can be dissipated not only through the ordinary cell-wall buckling but also via the extended yielding and the pressure-induced infiltration. As a result, the energy absorption efficiency, either on mass or on volumetric basis, is considerably improved.