Statistical mechanics of complex neural systems and high dimensional data

Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.

[1]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[2]  H. Bethe Statistical Theory of Superlattices , 1935 .

[3]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[4]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[5]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[6]  H. D. Block The perceptron: a model for brain functioning. I , 1962 .

[7]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[8]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[9]  J. Albus A Theory of Cerebellar Function , 1971 .

[10]  Paul C. Martin,et al.  Statistical Dynamics of Classical Systems , 1973 .

[11]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[12]  C. Dominicis Dynamics as a substitute for replicas in systems with quenched random impurities , 1978 .

[13]  D. Sherrington Stability of the Sherrington-Kirkpatrick solution of a spin glass model: a reply , 1978 .

[14]  D. Thouless,et al.  Stability of the Sherrington-Kirkpatrick solution of a spin glass model , 1978 .

[15]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[16]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[17]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[18]  Sompolinsky,et al.  Storing infinite numbers of patterns in a spin-glass model of neural networks. , 1985, Physical review letters.

[19]  Sompolinsky,et al.  Spin-glass models of neural networks. , 1985, Physical review. A, General physics.

[20]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[21]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[22]  D. Amit,et al.  Statistical mechanics of neural networks near saturation , 1987 .

[23]  Sompolinsky,et al.  Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model. , 1987, Physical review. A, General physics.

[24]  D. Huse,et al.  Pure states in spin glasses , 1987 .

[25]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[26]  Moore,et al.  Chaotic nature of the spin-glass phase. , 1987, Physical review letters.

[27]  E. Gardner,et al.  An Exactly Solvable Asymmetric Neural Network Model , 1987 .

[28]  E. Gardner,et al.  Optimal storage properties of neural network models , 1988 .

[29]  E. Gardner The space of interactions in neural network models , 1988 .

[30]  Sommers,et al.  Spectrum of large random asymmetric matrices. , 1988, Physical review letters.

[31]  Sompolinsky,et al.  Dynamics of spin systems with randomly asymmetric bonds: Ising spins and Glauber dynamics. , 1988, Physical review. A, General physics.

[32]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[33]  W. Krauth,et al.  Storage capacity of memory networks with binary couplings , 1989 .

[34]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[35]  M. Mézard The space of interactions in neural networks: Gardner's computation with the cavity method , 1989 .

[36]  Werner Krauth,et al.  Critical storage capacity of the J = ± 1 neural network , 1989 .

[37]  Rose,et al.  Statistical mechanics and phase transitions in clustering. , 1990, Physical review letters.

[38]  Kanter,et al.  Statistical mechanics of a multilayered neural network. , 1990, Physical review letters.

[39]  Sompolinsky,et al.  Learning from examples in large neural networks. , 1990, Physical review letters.

[40]  Asymptotic corrections to the Wigner semicircular eigenvalue spectrum of a large real symmetric random matrix using the replica method , 1990 .

[41]  Hansel,et al.  Broken symmetries in multilayered perceptrons. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[42]  Sompolinsky,et al.  Statistical mechanics of learning from examples. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[43]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[44]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[45]  Schuster,et al.  Suppressing chaos in neural networks by noise. , 1992, Physical review letters.

[46]  Zippelius,et al.  Storage capacity and learning algorithms for two-layer neural networks. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[47]  H. Schwarze Learning a rule in a multilayer neural network , 1993 .

[48]  T. Watkin,et al.  THE STATISTICAL-MECHANICS OF LEARNING A RULE , 1993 .

[49]  Griniasty "Cavity-approach" analysis of the neural-network learning problem. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Sompolinsky,et al.  Scaling laws in learning of classification tasks. , 1993, Physical review letters.

[51]  Michael Biehl,et al.  Statistical mechanics of unsupervised structure recognition , 1994 .

[52]  Opper,et al.  Learning and generalization in a two-layer neural network: The role of the Vapnik-Chervonvenkis dimension. , 1994, Physical review letters.

[53]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[54]  Sompolinsky,et al.  Statistical mechanics of the maximum-likelihood density estimation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  X Hu,et al.  Continuous Update with Random Encoding (CURE): A New Strategy for Dynamic Imaging , 1995, Magnetic resonance in medicine.

[56]  Michael Biehl,et al.  Supervised Learning from Clustered Input Examples , 1995 .

[57]  Monasson,et al.  Weight space structure and internal representations: A direct approach to learning and generalization in multilayer neural networks. , 1995, Physical review letters.

[58]  C. Van Den Broeck,et al.  Analysing Cluster Formation by Replica Method , 1995 .

[59]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[60]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[61]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[62]  Blatt,et al.  Superparamagnetic clustering of data. , 1998, Physical review letters.

[63]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[64]  J. Hopfield,et al.  All-or-none potentiation at CA3-CA1 synapses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Haim Sompolinsky,et al.  Chaotic Balanced State in a Model of Cortical Circuits , 1998, Neural Computation.

[66]  Michael I. Jordan Graphical Models , 2003 .

[67]  M. Opper,et al.  Statistical mechanics of Support Vector networks. , 1998, cond-mat/9811421.

[68]  Anirvan M. Sengupta,et al.  Distributions of singular values for some random matrices. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Sompolinsky,et al.  Thouless-anderson-palmer equations for neural networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[71]  Christian Van den Broeck,et al.  Statistical Mechanics of Learning , 2001 .

[72]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[73]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[74]  V. Akila,et al.  Information , 2001, The Lancet.

[75]  R Urbanczik,et al.  Universal learning curves of support vector machines. , 2001, Physical review letters.

[76]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[77]  C. Tracy,et al.  Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.

[78]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[79]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[80]  B. Barbour,et al.  Properties of Unitary Granule Cell→Purkinje Cell Synapses in Adult Rat Cerebellar Slices , 2002, The Journal of Neuroscience.

[81]  Alexander Lerchner,et al.  Mean Field Methods for Cortical Network Dynamics , 2003, Summer School on Neural Networks.

[82]  Xiao-Jing Wang,et al.  Mean-Field Theory of Irregularly Spiking Neuronal Populations and Working Memory in Recurrent Cortical Networks , 2003 .

[83]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[85]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[86]  J. Nadal,et al.  Optimal Information Storage and the Distribution of Synaptic Weights Perceptron versus Purkinje Cell , 2004, Neuron.

[87]  J. Montgomery,et al.  Discrete synaptic states define a major mechanism of synapse plasticity , 2004, Trends in Neurosciences.

[88]  Péter Érdi,et al.  Computational Neuroscience: Cortical Dynamics , 2004, Lecture Notes in Computer Science.

[89]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[90]  James L. McClelland,et al.  Semantic Cognition: A Parallel Distributed Processing Approach , 2004 .

[91]  M. Rattray,et al.  Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Avrim Blum,et al.  Random Projection, Margins, Kernels, and Feature-Selection , 2005, SLSFS.

[93]  S. Wang,et al.  Graded bidirectional synaptic plasticity is composed of switch-like unitary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  F. Guerra Spin Glasses , 2005, cond-mat/0507581.

[95]  Dörthe Malzahn,et al.  A statistical physics approach for the analysis of machine learning algorithms on real data , 2005 .

[96]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[97]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[98]  D. Donoho,et al.  Neighborliness of randomly projected simplices in high dimensions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[100]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[101]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[102]  L. Abbott,et al.  Neural network dynamics. , 2005, Annual review of neuroscience.

[103]  Marko Grobelnik,et al.  Subspace, Latent Structure and Feature Selection, Statistical and Optimization, Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers , 2006, SLSFS.

[104]  J. Haupt,et al.  Compressive Sampling for Signal Classification , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[105]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[106]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[107]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[108]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[109]  Richard G. Baraniuk,et al.  Sparse Signal Detection from Incoherent Projections , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[110]  Riccardo Zecchina,et al.  Learning by message-passing in networks of discrete synapses , 2005, Physical review letters.

[111]  Craig A. Tracy,et al.  Nonintersecting Brownian Excursions , 2006, math/0607321.

[112]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[113]  L. Abbott,et al.  Eigenvalue spectra of random matrices for neural networks. , 2006, Physical review letters.

[114]  H. Sompolinsky,et al.  The tempotron: a neuron that learns spike timing–based decisions , 2006, Nature Neuroscience.

[115]  Richard G. Baraniuk,et al.  Multiscale Random Projections for Compressive Classification , 2007, 2007 IEEE International Conference on Image Processing.

[116]  Chinmay Hegde,et al.  Random Projections for Manifold Learning , 2007, NIPS.

[117]  S. Majumdar,et al.  Large deviations of the maximum eigenvalue in Wishart random matrices , 2007, cond-mat/0701371.

[118]  Surya Ganguli,et al.  Function constrains network architecture and dynamics: a case study on the yeast cell cycle Boolean network. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[119]  Richard G. Baraniuk,et al.  The smashed filter for compressive classification and target recognition , 2007, Electronic Imaging.

[120]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[121]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[122]  R. Zecchina,et al.  Efficient supervised learning in networks with binary synapses , 2007, Proceedings of the National Academy of Sciences.

[123]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[124]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[125]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[126]  Surya Ganguli,et al.  Memory traces in dynamical systems , 2008, Proceedings of the National Academy of Sciences.

[127]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[128]  S. Majumdar,et al.  Exact distribution of the maximal height of p vicious walkers. , 2008, Physical review letters.

[129]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[130]  J. Sanes,et al.  Ome sweet ome: what can the genome tell us about the connectome? , 2008, Current Opinion in Neurobiology.

[131]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[132]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[133]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[134]  Andrea Pagnani,et al.  Statistical mechanics of sparse generalization and graphical model selection , 2009 .

[135]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[136]  S. Chatterjee Disorder chaos and multiple valleys in spin glasses , 2009, 0907.3381.

[137]  Kunal K. Ghosh,et al.  Advances in light microscopy for neuroscience. , 2009, Annual review of neuroscience.

[138]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[139]  Yoshiyuki Kabashima,et al.  Erratum: A typical reconstruction limit of compressed sensing based on Lp-norm minimization , 2009, ArXiv.

[140]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[141]  Dmitri B. Chklovskii,et al.  Reconstruction of Sparse Circuits Using Multi-neuronal Excitation (RESCUME) , 2009, NIPS.

[142]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[143]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[144]  Massimo Vergassola,et al.  Large deviations of the maximum eigenvalue for wishart and Gaussian random matrices. , 2008, Physical review letters.

[145]  Larry A. Wasserman,et al.  Compressed and Privacy-Sensitive Sparse Regression , 2009, IEEE Transactions on Information Theory.

[146]  Richard G. Baraniuk,et al.  Compressive Sensing DNA Microarrays , 2008, EURASIP J. Bioinform. Syst. Biol..

[147]  Friedrich T. Sommer,et al.  Adaptive compressed sensing — A new class of self-organizing coding models for neuroscience , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[148]  Surya Ganguli,et al.  Statistical mechanics of compressed sensing. , 2010, Physical review letters.

[149]  David C. Hoyle,et al.  Statistical mechanics of learning orthogonal signals for general covariance models , 2010 .

[150]  Significance analysis and statistical mechanics: an application to clustering. , 2010, Physical review letters.

[151]  Volkan Cevher,et al.  Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective , 2010, Proceedings of the IEEE.

[152]  Friedrich T. Sommer,et al.  Deciphering subsampled data: adaptive compressive sampling as a principle of brain communication , 2010, NIPS.

[153]  Surya Ganguli,et al.  Short-term memory in neuronal networks through dynamical compressed sensing , 2010, NIPS.

[154]  Aydogan Ozcan,et al.  Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects , 2010, Optics express.

[155]  F. Wolf,et al.  Dynamical entropy production in spiking neuron networks in the balanced state. , 2010, Physical review letters.

[156]  L. Abbott,et al.  Stimulus-dependent suppression of chaos in recurrent neural networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[157]  Rémi Monasson,et al.  Theory of spike timing-based neural classifiers. , 2010, Physical review letters.

[158]  M. London,et al.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex , 2010, Nature.

[159]  Laurent U. Perrinet,et al.  Role of Homeostasis in Learning Sparse Representations , 2007, Neural Computation.

[160]  J. Taraska,et al.  Fluorescence Applications in Molecular Neurobiology , 2010, Neuron.

[161]  Alexei A. Koulakov,et al.  Sparse incomplete representations: A novel role for olfactory granule cells , 2010, 1002.4903.

[162]  Michael B. Wakin,et al.  Stable manifold embeddings with operators satisfying the Restricted Isometry Property , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[163]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[164]  Y. Mishchenko Reconstruction of complete connectivity matrix for connectomics by sampling neural connectivity with fluorescent synaptic markers , 2011, Journal of Neuroscience Methods.

[165]  F. Sommer,et al.  Ramsey theory reveals the conditions when sparse coding on subsampled data is unique , 2011 .

[166]  A. Koulakov,et al.  Sparse Incomplete Representations: A Potential Role of Olfactory Granule Cells , 2011, Neuron.

[167]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[168]  Andrea Montanari,et al.  Graphical Models Concepts in Compressed Sensing , 2010, Compressed Sensing.

[169]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[170]  F. Wolf,et al.  Dynamic Flux Tubes Form Reservoirs of Stability in Neuronal Circuits , 2012 .

[171]  Peter Sollich,et al.  Replica theory for learning curves for Gaussian processes on random graphs , 2012, 1202.5918.

[172]  Sundeep Rangan,et al.  Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing , 2009, IEEE Transactions on Information Theory.

[173]  Surya Ganguli,et al.  Behavioral/systems/cognitive Spatial Information Outflow from the Hippocampal Circuit: Distributed Spatial Coding and Phase Precession in the Subiculum , 2022 .

[174]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[175]  David Holcman,et al.  Time scale of diffusion in molecular and cellular biology , 2014 .

[176]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[177]  H. Seung,et al.  Scaling Laws in Learning of Classification Tasks 17 MAY 1993 , .

[178]  Niels Bohr InstituteBlegdamsvej An Exactly Solvable Model of Unsupervised Learning , 2022 .

[179]  Xiaojin Zhu Random Projection , .